
Information-theoretic locality properties of natural language

Richard Futrell
Department of Language Science
University of California, Irvine

rfutrell@uci.edu

Abstract

I present theoretical arguments and new empirical evidence for an information-theoretic principle
of word order: information locality, the idea that words that strongly predict each other should
be close to each other in linear order. I show that information locality can be derived under
the assumption that natural language is a code that enables efficient communication while min-
imizing information-processing costs involved in online language comprehension, using recent
psycholinguistic theories to characterize those processing costs information-theoretically. I argue
that information locality subsumes and extends the previously-proposed principle of dependency
length minimization (DLM), which has shown great explanatory power for predicting word order
in many languages. Finally, I show corpus evidence that information locality has improved ex-
planatory power over DLM in two domains: in predicting which dependencies will have shorter
and longer lengths across 50 languages, and in predicting the preferred order of adjectives in
English.

1 Introduction

The field of functional linguistics has long argued that the distinctive properties of natural language
are best explained in terms of what makes for an efficient communication system under the cognitive
constraints particular to human beings. The idea is that the properties of language are determined by the
pressure to enable efficient communication while minimizing the information-processing effort required
for language production and comprehension by humans.

Within that field, a particularly promising concept is the principle of dependency length minimiza-
tion (DLM): the idea that words linked in syntactic dependencies are under a pressure to be close in
linear order. DLM provides a single unified explanation for many of the word order properties of nat-
ural language: Greenberg’s harmonic word order universals (Greenberg, 1963; Dryer, 1992; Hawkins,
1994; Hawkins, 2004; Hawkins, 2014) and exceptions to them (Temperley, 2007); the rarity of crossing
dependencies (Ferrer-i-Cancho, 2006; Ferrer-i-Cancho and Gómez-Rodríguez, 2016), which correspond
to deviations from context-free grammar (Kuhlmann, 2013); ordering preferences based on constituent
length such as Heavy NP Shift (Wasow, 2002; Gildea and Temperley, 2010); and the statistical distribu-
tion of orders in treebank corpora (Liu, 2008; Futrell et al., 2015). See Liu et al. (2017) and Temperley
and Gildea (2018) for recent reviews. The theoretical motivation for DLM is based on efficiency of
language processing: the idea is that long dependencies tax the working memory capacities of speakers
and listeners (Gibson, 1998; Gibson, 2000); in line with this view, there is observable processing cost in
terms of reading time for long dependencies (Grodner and Gibson, 2005; Bartek et al., 2011).

At the same time, there have been attempts to derive the properties of human language formally from
information-theoretic models of efficiency (Ferrer-i-Cancho and Solé, 2003; Ferrer-i-Cancho and Díaz-
Guilera, 2007). But it is not yet clear how a principle such as DLM, which appears to be necessary for
explaining the syntactic properties of natural language, would fit into these theories, or more generally
into the information-theoretic view of language as an efficient code. The motivation for DLM is based
on heuristic arguments about memory usage and on empirical results from studies of online processing,
and it is not clear how to translate this motivation into the mathematical language of information theory.



Here I bridge this gap by providing theoretical arguments and empirical evidence for a new,
information-theoretic principle of word order, grounded in empirical findings from the psycholinguis-
tic literature and in the theory of communication in a noisy channel. I assume that linguistic speakers
and listeners are processing language incrementally using lossy memory representations of linguistic
context. Under these circumstances, we can derive a principle of information locality, which states that
an efficient language will minimize the linear distance between elements with high mutual information,
an information-theoretic measure of how strongly two words predict each other. Furthermore, assum-
ing a particular probabilistic interpretation of dependency grammar (Eisner, 1996; Klein and Manning,
2004), I show that DLM falls out as an approximation to information locality. Finally, I present two new
pieces of empirical evidence that information locality provides improved explanatory power over DLM
in predicting word orders in corpora.

The remainder of the paper is structured as follows. Section 2 reviews relevant psycholinguistic results
and information-theoretic models of online processing difficulty, concluding that they are inadequate for
predicting word order patterns. Section 3 shows how to derive the principle of information locality from a
modified model of online processing difficulty, and how DLM can be seen as a special case of information
locality. In Section 4, I give corpus evidence that information locality makes correct predictions in two
cases where DLM makes no predictions: in predicting the distance between words in dependencies in
general across 50 languages, and in predicting the relative order of adjectives in English.

2 Background: Efficient communication under information processing constraints

I am interested in the question: What would a maximally efficient communication system look like,
subject to human information processing constraints? To answer this question, we need a model of
those information processing constraints. Here I review a leading theory of information processing
constraints operative during on-line language comprehension, called surprisal theory (Hale, 2001; Levy,
2008; Hale, 2016), which is mathematically grounded in information theory, and discuss the relevance
of surprisal theory for word order patterns in languages. Perhaps surprisingly, it turns out surprisal
theory has very little to say about word order, which will necessitate an update to the theory described in
Section 3.

Surprisal theory holds that the incremental processing difficulty for a word w given preceding context
c (comprising the previous words as well as extra-linguistic context) is proportional to the surprisal of
the word given the context:

Difficulty(w|c) ∝ − log p(w|c), (1)

where the surprisal is measured in bits when the logarithm is taken to base 2. This quantity is also
interpretable as the information content of the word in context. It indicates the extent to which a
word is unpredictable in context. Under surprisal theory, the average processing difficulty per word in
language is proportional to the entropy rate of the language: the average surprisal of each word given
an unbounded amount of context information.

There are multiple convergent theoretical motivations for surprisal theory (Levy, 2013), and it is in
line with recent theories of information processing difficulty from robotics, artificial intelligence, and
neuroscience in that it proposes a certain amount of cost per bit of information processed (Friston, 2010;
Tishby and Polani, 2011; Genewein et al., 2015).

Surprisal theory also has excellent empirical coverage of psycholinguistic data: for example, taking
word-by-word reading times as a measure of processing difficulty, Smith and Levy (2013) find that
empirically observed reading times in naturalistic text are a robustly linear function of surprisal over
8 orders of magnitude. Levy (2008) shows that surprisal theory can explain many diverse phenomena
studied in the previous psycholinguistic literature.

The fact that processing time is a linear function of surprisal will be important for deriving predictions
about word order: it tightly constrains theories about the interactions of word order and processing
difficulty. In fact, surprisal theory in the form of Eq. 1 leads to the prediction that the average processing
difficulty per word is not at all a function of the word order rules of a language, provided that different
word order rules do not affect the entropy rate of the language. To see this, consider a sentence of n



words w1, ..., wn in some language L. The total information-processing difficulty for comprehending
this sentence ends up being equal to the quantity of information content of the sentence in the language:

Difficulty(w1, ..., wn) =
n∑
i=1

Difficulty(wi|w1, ..., wi−1) (2)

∝
n∑
i=1

− log pL(wi|w1, ..., wi−1)

= − log

n∏
i=1

pL(wi|w1, ..., wi−1)

= − log pL(w1, ..., wn). (3)

Now let us consider how this sentence might look in another language L′ with other rules for ordering
words. As long as the total probability of the sentence in L′ is the same as the equivalent sentence in
L—regardless of the order of words—the predicted processing difficulty for the sentence is the same.
For example, maybe L is English and L′ is reversed-English: a language which is identical to English
except that all sentences are reversed in order. Then the English sentence w1, ..., wn would come out
as the reversed-English sentence wn, wn−1, ..., w1, with the same total probability and thus exactly the
same predicted processing difficulty under surprisal theory.

The general expressed by Eq. 3 is that, under surprisal theory, the word order patterns of a language do
not affect the overall processing difficulty of the language unless they increase or decrease the average
total surprisal of sentences of the language, or in other words the entropy over sentences in a language.
The predicted processing difficulty is not affected by word order rules except inasmuch as they decrease
the entropy over sentences (by introducing ambiguities) or increase the entropy over sentences (by re-
moving ambiguities) (Levy, 2005; Futrell, 2017). Essentially, all that surprisal theory has to say about
word order is that less frequent orders within a language are more costly.

This invariance to order is problematic for theories that have attempted to explain word order patterns
in terms of maximizing the predictability of words (Gildea and Jaeger, 2015; Ferrer-i-Cancho, 2017):
such theories have derived predictions about word order by introducing auxiliary assumptions. For ex-
ample, Gildea and Jaeger (2015) show that word order rules in languages minimize surprisal as calculated
from a trigram model, rather than a full probability model; this ends up being a special case of the theory
we advocate below in Section 3. Ferrer-i-Cancho (2017) implicitly assumes that the predictability of the
verb is more impactful for processing difficulty than the predictability of other words, such that orders
that minimize the surprisal of the verb are favorable.

There are at least two general ways to modify surprisal theory to break its order-invariance. The first
would be to posit that processing difficulty is some non-linear function of surprisal. This route is not
attractive, because the current state of empirical knowledge is that processing time is determined linearly
by surprisal (Smith and Levy, 2013). The second way of modifying surprisal theory would be to posit that
the relevant probability distribution of words given contexts does not take into account full information
from the context, or is distorted in some way relative to the true distribution of words given contexts. As
we will see below, this solution allows us to derive information locality.

3 Lossy-context surprisal and information locality

I propose to modify surprisal theory in the manner described in Futrell and Levy (2017). The contents of
this section are a simplified exposition of the derivations presented in that paper.

In the modified suprisal theory, the predicted processing difficulty per word w is a function of the
word’s expected log probability given a lossy or noisy memory representation m of the context c. That
is:

Difficulty(w|c) ∝ E
m|c

[− log p(w|m)] , (4)



where m|c indicates the conditional distribution of lossy memory representations given contexts, called
the memory encoding function. I call this model lossy-context surprisal, because the predicted pro-
cessing difficulty depends on a lossy memory m, rather than the objective context c. In general, due
to the Data Processing Inequality (Cover and Thomas, 2006), m can be seen as a representation of c to
which noise has been added. Taking c to be the sequence of word tokens leading up to a given token wi,
we can write Eq. 4 as:

Difficulty(wi|w1:i−1) ∝ E
m|w1:i−1

[− log p(wi|m)] , (5)

where w1:i−1 denotes the sequence of words from index 1 to index i− 1 inclusive.

Unlike plain surprisal theory, lossy-context surprisal predicts that some systems of word order rules
will result in more processing efficiency than others. In particular, it predicts locality effects (Gibson,
1998; Gibson, 2000) in the form of information locality: there will be difficulty when elements that
have high mutual information are distant from each other in linear order. The basic intuition is that,
when two elements that predict each other in principle are separated in time, they will not be able to
predict each other in practice because by the time the processor gets to the second element, the first one
has been partially forgotten. The result is that the second element is less predictable than it could have
been, causing excess processing cost.

3.1 Derivation of information locality

Assume that the memory encoding function m|c is structured such that some proportion of the informa-
tion available in a word is lost depending on how long the word has been in memory. For a word which
has been in memory for one timestep, the proportion of information which is lost is a constant e1; for a
word which has been in memory for two timesteps, the proportion of information lost is e2; in general
for a word which has been in memory for t timesteps, the proportion of information lost is et. Assume
further that et is monotonically increasing in t: i.e. t < τ implies et ≤ eτ . This process reflects the
fact that information in a memory representation can only become degraded over time, in the spirit of the
Data Processing Inequality (Cover and Thomas, 2006).

This memory model is equivalent to assuming that the context is subject to erasure noise, a commonly
used noise model in information theory (Cover and Thomas, 2006). In erasure noise, a symbol x is
stochastically erased (replaced with a special erasure symbol E) with some probability e. The noise
model here further assumes that the erasure rate increases with time: I call this noise model progressive
erasure noise.

I will now show that subjective surprisal, under the assumption of progressive erasure noise, gives rise
to information locality.

Under progressive erasure noise, the context w1:i−1 can be represented as a sequence of symbols
m1:i−1. Each symbol mj , called a memory symbol, is equal either to the context word wj or to the
erasure symbol E. The surprisal of a word wi given the memory representation m1:i−1 can be written in
two terms:

− log p(wi|m1:i−1) = − log p(wi)− pmi(wi;m1:i−1),

where pmi(wi;m1:i−1) = log p(wi|m1:i−1)
p(wi)

is the pointwise mutual information (Fano, 1961; Church
and Hanks, 1990) of the word and the memory representation, giving the extent to which the particular
memory representation predicts the particular word. We can now use the chain rule to break the pointwise



mutual information into separate terms, one for each symbol in the memory representation:

pmi(wi;m1:i−1) =

i−1∑
j=1

pmi(wi;mj |m1:j−1)

=
i−1∑
j=1

pmi(wi;mj)−
∑
j=1

pmi(wi;mj ;m1:j−1)

=
i−1∑
j=1

pmi(wi;mj)−R, (6)

where pmi(x; y; z) is the three-way pointwise interaction information of three variables (Bell, 2003),
indicating the extent to which the conditional pmi(wi;mj |m1:j−1) differs from the unconditional
pmi(wi;mj). These higher-order interaction terms are then grouped together in a term called R.

Now substituting Eq. 6 into Eq. 5, we get an expression for processing difficulty in terms of the pmi
of each memory symbol with the current word:

Difficulty(wi|w1:i−1) ∝ E
m|w1:i−1

[− log p(wi|m)] (5)

= E
m|w1:i−1

− log p(wi)−
i−1∑
j=1

pmi(wi;mj) +R


= − log p(wi)− E

m|w1:i−1

 i−1∑
j=1

pmi(wi;mj) +R


= − log p(wi)−

i−1∑
j=1

E
mj |wj

[pmi(wi;mj)] + E
m|w1:i−1

[R] . (7)

It remains to calculate the expected pmi of the current word and a memory symbol given the distribution
of possible memory symbols. Recall that eachmj is either equal to the erasure symbol E (with probability
ei−j) or to the word wj (with probability 1 − ei−j). If mj = E, then pmi(wi;mj) = 0; otherwise
pmi(wi;mj) = pmi(wi;wj). Therefore the expected pmi between a word wi and a memory symbol mj

is (1 − ei−j)pmi(wi;wj). The effect of erasure noise on the higher-order terms collected in R is more
complicated, but in general will have the effect of reducing their value, because a higher-order interaction
information term will have a value of 0 if any single variable in it is erased. Therefore we can write the
expected processing difficulty per word as:

Difficulty(wi|w1:i−1) ∝ − log p(wi)−
i−1∑
j=1

(1− ei−j)pmi(wi;wj) + o(R), (8)

where o(R) indicates a value that is is upper-bounded by R. Assuming the higher-order terms o(R) are
negligible, then the expected processing difficulty as a function of word order is purely determined by
the expression

−
i−1∑
j=1

(1− ei−j)pmi(wi;wj). (9)

As wordswi andwj become more distant from each other, the value of the survival probability (1−ei−j)
must decrease, so the value of (9) must increase, such that the theory predicts increased processing
difficulty in proportion to the pairwise pmi between wi and wj .



In general, Eq. 8 holds that processing difficulty as a function of word order increases monotonically
as elements with high pointwise mutual information are separated in linear order.1 It will be minimized
when elements with the highest pointwise mutual information are closest to each other. If word orders are
shaped by a pressure for processing efficiency, then information locality comes out to a kind of attraction
between words with high pmi.2

3.2 DLM as an approximation to information locality

The principle of information locality holds that groups of words with high mutual information will tend
to be close to each other, in order to maximize online processing efficiency. I wish to argue that this
result subsumes the principle of dependency length minimization (DLM), which holds that all words in
syntactic dependencies will tend to be close to each other. This connection requires a linking hypothesis:
that syntactic dependencies correspond to the word pairs with high mutual information within a sentence.
I call this hypothesis the Head–Dependent Mutual Information (HDMI) hypothesis.

There are good theoretical and empirical reasons to believe the HDMI hypothesis is true. The
empirically-measured mutual information of words pairs in head–dependent relationships has been found
to be greater than various baselines in Futrell and Levy (2017) across languages. Theoretically, it makes
sense for word pairs in dependency relationships to have the highest mutual information because mutual
information is a measure of the strength of covariance between two variables, and words in dependencies
are by definition those word pairs whose covariance is directly constrained by grammatical rules. More
formally, in distributions over dependency trees generated by head-outward generative models (Eisner,
1996; Klein and Manning, 2004), heads and dependents will have the highest mutual information of any
word pairs (Futrell et al., 2019). The basic idea that dependencies correspond to high-mutual-information
word pairs has a long history in computational linguistics (Resnik, 1996; de Paiva Alves, 1996; Yuret,
1998).

If we assume the strongest form of the HDMI hypothesis—that mutual information between words not
linked in a dependency is completely negligible—then Eq. 8 implies that the expected processing cost
for a sentence as a function of word order is a monotonically increasing function of dependency length,
which is exactly the claim underlying DLM. This strong form of the HDMI hypothesis is surely false,
but it shows how DLM can serve as an approximation to the predictions of information locality.

The notion of information locality is also linked to more general notions of complexity, such as the
theory of statistical complexity (Crutchfield and Young, 1989), which apply to any stochastic process.
The statistical complexity of a process is the entropy of the maximally compressed representation of the
past of a process required to predict the future of the process with optimal accuracy. Among processes
with the same entropy rate, processes with poor information locality properties (where elements with
high mutual information are far from each other) will have higher statistical complexity, because each
bit of predictive information will need to be retained in memory over more timesteps. If we view DLM
as a special case of information locality, then that means that minimizing dependency length has the
effect of lowering statistical complexity. Thus it may be the case that the word order properties of human
language are a very general consequence of minimization of statistical complexity.

1If we include the effects of the higher-order terms collected in R, then Eq. 7 also implies that processing difficulty will in-
crease when groups of elements with high interaction information are separated from each other in time. Here "high interaction
information" refers to a large positive value in the case of even-cardinality groups of elements, and a large negative value in the
case of odd-cardinality groups of elements. See Bell (2003) for the relevant technical details on interaction information.

2If words are under a pressure to be close as a function of their pmi, then this raises the question of what is to be expected
for nonce and novel words, for which no corpus co-ocurrence statistics are available. This issue was raised as an objection
to information locality by Dyer (2017). While the probabilities that go into practically calculating pmi come from corpora,
the probabilities that are truly important from the perspective of processing difficulty are the listener’s subjective probabilities,
which are only approximated by corpus-derived probabilities (Smith and Levy, 2011). A listener encountering a nonce word
will have some hypothesis about its syntax and meaning, which means that the listener will have expectations about what words
the nonce word will co-occur with, and thus the nonce word will have a nonzero (subjective) pmi value with other words for
the listener. In an experimental study, the pmi values for nonce words could be measured using techniques such as the Cloze
task (Taylor, 1953), which measures these subjective probabilities.



4 Information locality beyond DLM

Here I give new empirical evidence that natural langauges exhibit information locality in a way that goes
beyond the predictions of DLM.

4.1 Strength of locality effect for different dependencies

DLM predicts that all words in dependencies will be under a pressure to be close to each other, but
it does not make any predictions about which dependencies will be under especially strong pressure.
However, empirically, DLM effects in word order preferences and also in online processing difficulty
show asymmetries based on the details about particular dependencies (Stallings et al., 1998; Demberg
and Keller, 2008).

Here I propose that the strength of attraction between two words linked in a dependency is modulated
by the pointwise mutual information of the two words, as predicted by information locality.

Language βpmi p value
Ancient Greek -0.18 < .001
Arabic -0.26 <.001
Basque -0.22 <.001
Belarusian -0.20 <.001
Bulgarian -0.29 <.001
Catalan -0.29 <.001
Church Slavonic -0.23 <.001
Coptic -0.35 <.001
Croatian -0.32 <.001
Czech -0.27 <.001
Danish -0.38 <.001
Dutch -0.10 <.001
English -0.38 <.001
Estonian -0.32 <.001
Finnish -0.29 <.001
French -0.33 <.001
Galician -0.35 <.001
German -0.25 <.001
Gothic -0.19 <.001
Hebrew -0.21 <.001
Hindi -0.26 <.001
Hungarian -0.11 <.001
Indonesian -0.22 <.001
Irish -0.37 <.001
Italian -0.35 <.001

Language βpmi p value
Japanese -0.32 <.001
Kazakh -1.18 0.01
Korean -0.14 <.001
Latin -0.18 <.001
Latvian -0.32 <.001
Lithuanian -0.41 <.001
Mandarin -0.19 <.001
Modern Greek -0.25 <.001
Norwegian -0.37 <.001
Persian -0.19 <.001
Polish -0.23 <.001
Portuguese -0.23 <.001
Romanian -0.36 <.001
Russian -0.18 <.001
Sanskrit 0.10 0.28
Slovak -0.30 <.001
Slovenian -0.38 <.001
Spanish -0.37 <.001
Swedish -0.35 <.001
Tamil -0.18 <.001
Turkish -0.22 <.001
Ukrainian -0.29 <.001
Urdu -0.22 <.001
Uyghur -0.04 0.79
Vietnamese -0.27 <.001

Table 1: Regression coefficients predicting dependency length as a function of pmi between head and
dependent. A negative sign indicates that words with higher pmi are closer to each other. Languages
where the effect is not significant at p < .001 are in italics.

I tested this hypothesis in 50 languages of the Universal Dependencies 2.1 treebanks (Nivre et al.,
2017). I excluded all punctuation and root dependencies, and collapsed all strings of words linked by
“flat”, “fixed”, and “compound” dependencies (which indicate multiword expressions) into single tokens.
For each word pair r = (h, d) in a head–dependent relationship, I fit a linear regression model to predict
the distance between the two words yr from their pmi:

yr = β0 + βpmipmi(h; d) + Si + Si,pmipmi(h; d) + εr, (10)



where Si and Si,pmi are by-sentence random intercepts and slopes subject to L2 regularization, making
this a mixed-effects regression model (Gelman and Hill, 2007; Baayen et al., 2008; Barr et al., 2013).
These extra terms account for any per-sentence idiosyncratic behavior of dependencies (for example,
effects of sentence length). The key coefficient is βpmi which, if significantly negative, indicates that
words with high pmi are especially attracted to each other. The pmi values were calculated between part-
of-speech tags rather than wordforms in order to avoid data sparsity issues in the estimation of mutual
information. For computational tractability, I include only at most 10,000 sentences per language and
exclude sentences of length greater than 20 words.3

Table 1 shows the values of βpmi and their significance. In all except 3 languages, I find the significant
negative effect at p < .001, indicating information locality effects beyond DLM. The effect size is
relatively stable across languages. In particular, the average value of βpmi across languages is around
−0.3, with standard error 0.02, indicating that for every bit of pmi between parts-of-speech, words in
dependencies are about 0.3 words closer together on average, robustly across languages.

4.2 Adjective order
Speakers of many languages show robust, stable patterns of preferences in terms of how they order
attributive adjectives that simultaneously modify a noun (Dixon, 1982; Scontras et al., 2017; Scontras et
al., 2019). For example, English speakers generally prefer the order in Example 1 over 2, or they perceive
Example 2 as expressing a different meaning which is marked relative to the first. As the dependency
structures show, the classical theory of DLM would not make any predictions for the relative ordering of
these adjectives, as all are in equivalent dependency relationships with the head noun. Classical syntactic
theories of adjective order have assumed that adjectives can be sorted into semantic classes (e.g., value,
color, nationality) and that there is a universal order of semantic classes in terms of which adjectives go
closer to the noun (e.g., adjectives are placed close to the noun in the order nationality > color > value)
(Cinque and Rizzi, 2008).

(1)
pretty red Italian car

amod
amod

amod

(2)
? red Italian pretty car

amod

amod

amod

Here I suggest that the preferred order of adjectives is determined by information locality: that is,
adjectives with higher mutual information with a noun go closer to that noun.

Previous work has shown that the best empirical predictor of adjective order is the rating of subjec-
tivity given to adjectives by experimental participants, with more subjective adjectives going farther out
from the head noun (Scontras et al., 2017; Scontras et al., 2019), but this work did not compare predic-
tions with mutual information. Simultaneously, Kirby et al. (2018) compared size adjectives and color
adjectives—where color adjectives are preferred to be farther out from the noun in English—and found
that color adjectives have lower pmi with the noun than size adjectives.

Here I compare subjectivity and mutual information as predictors of adjective order in large corpora
of English. For subjectivity ratings, I use the data from Scontras et al. (2017). For co-occurrence and
order data, I use the Google Syntactic n-grams corpus (Goldberg and Orwant, 2013). From this corpus,
I collect all cases of two adjectives modifying a single following noun with relation type amod, where
an adjective counts for inclusion if its part of speech is JJ, JJR, or JJRS and it is listed as an adjective
in the CELEX database (Baayen et al., 1995), and a noun counts for inclusion if its part of speech is NN
or NNS and it is listed as a noun in CELEX. The result is a dataset of adjective–adjective–noun (AAN )
triples, containing 1,604,285 tokens and 16,681 types.

3The code for this analysis is available online at http://github.com/langprocgroup/cliqs.



Subjectivity PMI Both
68.4% 66.9% 72.9%

Table 2: Accuracy of subjectivity and pmi as predictors of adjective order in logistic regressions, for
held-out types of adjective–adjective–noun triples.

For the calculation of pointwise mutual information, we need the conditional probability of adjectives
given nouns. I find this probability by maximum likelihood estimation, collecting all instances of single
adjectives modifying a following noun, by the same criteria as above.

I tested the relationship between pmi, subjectivity, and order statistically using logistic regression.
Given two adjectives preceding a noun, the question is which of the two is closer to the noun, as a
function of the difference in pmi or subjectivity between the two. Given an observed pair of adjectives
(A1, A2), ordered alphabetically, I fit a logistic regression to predict whether the alphabetically-second
adjective A2 is ordered closer to the noun N in the corpus, as a function of the pmi and subjectivity
difference between A1 and A2. The regression equation is:

log
p(A2 closer to N)

p(A1 closer to N)
= β0 + βS(S(A1)− S(A2)) + βpmi(pmi(A1;N)− pmi(A2;N)) + ε,

where S(A) is the subjectivity rating of adjective A. This regression setup was used to predict order data
in Morgan and Levy (2016). A positive coefficient βS indicates that the adjective with greater subjectivity
is likely to be farther from the noun. A negative coefficient βpmi indicates that an adjective with greater
pmi with the noun is likely to be closer to the noun.4

To evaluate the accuracy of subjectivity and information locality as theories of adjective order, I sepa-
rated out 10% of the AAN types as a test set (1,668 types), with the remaining types forming a training
set (15,013 types). I fit the logistic regression to the token-level data for the AAN types in the training
set, a total of 1,473,269 tokens. I find β0 = −0.7, βS = 14.1, and βpmi = −0.6, with all coefficients
significant at p < .001. The results mean that for each bit of pmi between an adjective A and a noun,
beyond the pmi of the other adjective with the noun and controlling for subjectivity, the log-odds that A
is closer to the noun increase by .6.5

I used the held-out AAN triples to test how well subjectivity and pmi would generalize when predict-
ing adjective order in unseen data (a total of 131,016 tokens). Table 2 shows test-set accuracy of logistic
regressions predicting adjective order using subjectivity, pmi, or both as predictors. Subjectivity and
pmi have roughly equal accuracy on the held-out types, with pmi slightly lower. The highest accuracy
is achieved when both subjectivity and pmi are included as predictors. This result shows that mutual
information has predictive value for adjective order beyond what is accounted for by subjectivity.

The regression shows that both subjectivity and mutual information are good predictors of adjective
order, so the question arises of whether the two predictors make overlapping or divergent predictions.
For 53% of the test-set tokens, subjectivity and pmi make the same (correct) prediction. I qualitatively
examined cases where pmi got the order right and subjectivity did not, and found that these usually
consist of cases where two adjectives are in the same semantic class, and yet strong ordering preferences
exist in the corpus, such as big long beard (preferred) vs. long big beard (dispreferred).

The results here do not adjudicate between subjectivity and mutual information as better predictors of
adjective order. The two may be independent factors predicting adjective order—a hypothesis explored
by Hahn et al. (2018)—or they may be related. I posit that subjectivity and mutual information are
conceptually related. The reasoning is: if an adjective is more subjective, then its applicability to any
given noun is determined by some external factor outside than the noun itself—the speaker’s subjective
state. In contrast, the applicability of a less subjective adjective is more strongly determined by the noun
itself due to the inherent properties of the noun. Mutual information is calculated from co-ocurrence

4The code for this analysis is available online at http://github.com/langprocgroup/adjorder.
5The values of subjectivity tend to be smaller than the values of pmi (average subjectivity of adjectives in the corpus is 0.5;

average pmi is 2.3), so the larger coefficient βS should not necessarily be interpeted as meaning that the effect of subjectivity
is larger.



statistics, where the speaker’s subjective state is unknown and therefore appears as a noise variable
affecting the distribution of adjectives. So from the perspective of co-ocurrence statistics, the distribution
of more subjective adjectives is noisier, and therefore has less mutual information with the head noun.
The relationship between subjectivity, mutual information, and adjective order may be the following:
subjectivity determines the joint distribution of adjectives and nouns, which in turn dictates the mutual
information, which then determines the preferred order via the principle of information locality.

In support of this idea, I found that the subjectivity score for an adjective is moderately anticorrelated
with its average pmi with nouns at r = −.32, Spearman’s ρ = −.35; the relationship between the two is
shown in Figure 1. Note that the estimates of mutual information obtained from corpora are noisy: it is
notoriously difficult to estimate quantities such as mutual information from count data (Paninski, 2003).
Better estimates of mutual information, obtained through more data or more sophisticated estimation
techniques, may show stronger correlations with subjectivity and with adjective order.
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Figure 1: Relationship between adjective subjectivity score and average pmi with nouns in Google Syn-
tactic n-Grams corpus.

5 Conclusion

I presented a theoretical argument that, if languages are organized for efficient communication subject
to human information processing constraints, then they will have the property of information locality:
words that predict each other will appear close to each other in time. I presented two pieces of novel
evidence in favor of information locality over previous theories of word order. I believe the principle of
information locality will enrich the growing link between theories of syntax and notions of processing
efficiency. By deriving the principle of dependency length minimization in an information-theoretic
setting and demonstrating improved predictive power over simple dependency length minimization, it
opens the way for unified information-theoretic models of human language.
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Marheinecke, Héctor Martínez Alonso, André Martins, Jan Mašek, Yuji Matsumoto, Ryan McDonald, Gustavo
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