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Abstract

Lexical preferences encoded as association metrics have been shown to improve performance
on structural ambiguities that are still challenging for modern parsers. This paper introduces a
mechanism to include lexical preferences into a neural transition-based dependency parser for
German. We compare pointwise mutual information (PMI) and embedding-based scores. Both
the PMI-based model and the embedding-based model outperform the baseline significantly. The
best model is PMI-based and increases overall performance by 0.26 LAS points over the baseline.

1 Introduction

Structural ambiguities that cannot be solved purely on the basis of structural preferences still pose a major
challenge to syntactic parsing. Prepositional phrase (PP) attachment and subject-object inversion are two
examples of such ambiguities. Table 1 gives an overview of the most frequent parser errors in a German
newspaper corpus of 20K sentences and 350K tokens, parsed by the De Kok and Hinrichs (2016) parser
with 92.01 labeled attachment score. It shows that more than one third of all errors involves prepositions,
subjects and accusative objects.

Relation Error count Percent of all errors
Prepositional phrase/object 6,861 25.62
Adverbial 3,106 11.60
Conjunction 2,391 8.92
Accusative object 1,608 6.00
Subject 1,577 5.81
Total error count 26,775 100.00

Table 1: Five most frequent parser errors by dependency label of the parser by De Kok and Hinrichs
(2016) for a German newspaper corpus. More than one third of all errors involves prepositions, subjects
and accusative objects.

Resolving such ambiguities often requires context information or world knowledge. In Example 1, the
direct object Problem ‘problem’ is fronted. The parser, however, learns from training data a preference
for the unmarked word order with sentence-initial subject. Problem would therefore be misclassified as
subject. Additionally, both Problem and Post ‘post’ are ambiguous between nominative and accusative
case. Information on the sentence level thus does not suffice to decide on the correct attachment. Con-
textual knowledge reveals that Problem typically attaches to lösen ‘to solve’ as direct object.

Semantic preferences can provide further disambiguation cues. The verb lösen prefers an animate
subject and an inanimate direct object. In Example 1, both Problem and Post are inanimate. World
knowledge is necessary to interpret Post as the (animate) group of postal employees. Such knowledge
can be learned from large corpora. Semantic preferences then yield the correct analysis of Post as animate
subject and Problem as inanimate direct object of lösen.
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‘The German Federal Post Office still has to solve this problem.’

Pointwise mutual information (PMI, Fano (1961)) has been used to measure selectional preferences
(Church and Hanks, 1990). PMI indicates how much two words occur together more often than chance.
In the example above, a high PMI of lösen and Problem in verb→ direct ob ject relations would already
provide enough information to solve the subject-object ambiguity. As PMIs are ideally calculated from
large corpora, they provide additional context information.

In more traditional analyses of dependency distributions, it has been shown that PMI is very beneficial
to solve structural ambiguities such as PP attachment (Hindle and Rooth, 1993; Ratnaparkhi, 1998; Volk,
2002). In parsing, bilexical preferences have been used by Van Noord (2007) to improve syntactic am-
biguity resolution in a Maximum-Entropy parser for Dutch. Kiperwasser and Goldberg (2015) extended
bilexical preferences to contextual association scores based on PMI and dependency embeddings (Levy
and Goldberg, 2014a) in a graph-based parser. Mirroshandel and Nasr (2016) integrated selectional pref-
erences into a graph-based dependency parser.

Recent approaches to neural dependency parsing (Chen and Manning, 2014; Kiperwasser and Gold-
berg, 2016; Dozat and Manning, 2017) implicitly encode information about co-occurrences through
vector representations of the token input (Mikolov et al., 2013). However, De Kok et al. (2017) have
shown for PP attachment that neural models can still benefit from information provided by PMI scores.

This paper argues that bilexical preferences are also useful in neural transition-based dependency
parsing. The two main contributions are 1) a methodology to apply bilexical preferences to neural
transition-based dependency parsing, and 2) an evaluation of two types of association metrics in a neural
dependency parser. Results confirm that association metrics benefit neural dependency parsing. The best
association score models outperform the baseline by 0.26 LAS points and improve performance on two
ambiguity solving tasks by up to 2.33 points.

2 Bilexical Preferences in Neural Dependency Parsing

2.1 Approach
Transition-based dependency parsing is the task of establishing dependency relations between tokens
(Kübler et al., 2009). Typically, unprocessed tokens are put on a buffer β , and a stack σ keeps track of
the partially processed tokens. In the transition system used in this work, sometimes called the stack-
projective system, attachments are made between the token on top of the stack and the second token on
the stack (Nivre, 2004). A LEFTARC transition attaches the second token on the stack as a dependent of
the token on top of the stack with relation r ∈ R, and vice versa for a RIGHTARC transition:

LEFTARC (σ |i| j,β ,R)→ (σ | j,β ,R∪{ j,r, i})
RIGHTARC (σ |i| j,β ,R)→ (σ |i,β ,R∪{i,r, j})
SHIFT (σ , i|β ,R)→ (σ |i,β ,R)

Association scores can inform a parser about whether an attachment with a particular dependency
relation should be made between two attachment sites. For each parser state, two attachments are possible
with any of the dependency relations that are available in that system.1 Association scores for all possible
attachments provide disambiguation cues at each state. They are added to the feature vector that is used
as input to the transition classifier. Association score vectors enhance existing vector representations of
words, part-of-speech tags, characters, dependency relations and morphological features.

2.2 Parser Integration
For each parser state, association scores are retrieved for LEFTARC and RIGHTARC transitions, and for
all possible dependency relations. Equation 1 defines the association score vector for a stack-projective

1A third option is to apply a SHIFT transition which does not introduce an attachment.



transition system with transitions between the token on top of the stack s0 and the second token on the
stack s1:

vassoc = [assoc(s0,s1,r), assoc(s1,s0,r) | ∀r ∈ R] (1)

Example 2 provides the resulting association score vector in a stack-projective system with a depen-
dency relation set that contains the subject, object and preposition relation.

(2) vassoc = [assoc(s0,s1,sub ject), assoc(s0,s1,ob ject), assoc(s0,s1, preposition),
assoc(s1,s0,sub ject), assoc(s1,s0,ob ject), assoc(s1,s0, preposition)]

with R = {sub ject,ob ject, preposition}

If no association score is available for a dependency triple, a default is assigned. An optional binary
indicator b ∈ {0,1} specifies whether the dependency triple was known. This makes it possible for the
model to distinguish between the default value and association strengths that overlap with the default
value. The binary indicators are added to the association score vector. The association score vectors are
concatenated with the remaining input feature vectors to represent a parser configuration.2

2.3 Association Metric Variants
Pointwise mutual information. Traditionally, PMI has been a means to capture bilexical preferences.
Normalized (NPMI, Bouma (2009)) and positive normalized PMI (PNPMI, Van de Cruys (2011)) with
add-1 Laplace smoothing have been tested in the parsing model. Given the dependency triple h r−→ d,
consisting of the head h, dependent d and dependency relation r, PMI is defined as:

PMI(h r−→ d) = log
p(h r−→ d)

p(h r−→) p( r−→ d)
(2)

The probability of h and d as heads and dependents with relation r is represented as p(h r−→) and
p( r−→ d), the dependency triple probability as p(h r−→ d). Normalized PMI

PMInorm(h
r−→ d) =

PMI(h r−→ d)

−log p(h r−→ d)
(3)

is a more easily interpretable variant of PMI, limiting the range of PMIs to lie between -1 and 1. Positive
PMI

PMIpos(h
r−→ d) = max(PMI(h r−→ d),0) (4)

rounds negative PMIs to 0.

Dependency embedding scores. PMI is likely to suffer from sparseness of dependency triples in the
training data. Previous attempts have used back-off models (Collins and Brooks, 1995) to counteract
this problem. The dependency embedding model by Levy and Goldberg (2014a) estimates probabilities
for unseen triples h r−→ d from word embeddings. The model predicts the probability p(1|h r−→ d) of
a dependency triple. Words are represented as embeddings that are trained jointly with the classifier
p(1|h r−→ d).

An embedding-based association score for the head word embedding Wh and the context embedding
Cd,r of the dependent d that is related to a head h via the dependency relation r can be formulated as:

assocdep(h
r−→ d) = p(1|h r−→ d) = σ(Wh ·Cd,r) (5)

where C ∈ R|V |×r×d and W ∈ R|V |×d . In the current model, the maximum entropy probability of 0.5 is
assigned as a default when no embedding for h, d or both is available and no score can be calculated.
Further model variations also include a binary indicator to distinguish the default score from a calculated
embedding-based score. In a more finegrained binary indicator model, the indicator informs the parser

2A complete list of parser input features can be found in Appendix A.



for which of the two tokens no embedding was available.
Levy and Goldberg (2014b) have shown that the skip-gram model is an implicit factorization of the

shifted PMI matrix of word co-occurrences. Dependency embeddings (Levy and Goldberg, 2014a) there-
fore implicitly factorize the shifted PMI matrix of head-dependent co-occurrences. Hence, association
scores based on dependency embeddings (Kiperwasser and Goldberg, 2015) can be seen as correlated
with PMIs.

3 Experiments

3.1 Experimental Setup

The neural transition-based dependency parser of De Kok and Hinrichs (2016) serves as the baseline for
the experiments. Words, part-of-speech tags and characters are represented as vectors that were trained
with structured skip-gram (Ling et al., 2015). Topological fields are used as additional input features.
The parser does pseudo-projective parsing (Nivre and Nilsson, 2005) and was trained on the shuffled
TüBa-D/Z (Telljohann et al., 2017) that contains 105K sentences and 1.9M tokens of manually labeled
data from the Berliner Tageszeitung (taz). Non-gold part-of-speech tags were trained via 10-fold jack-
knifing on the TüBa-D/Z.3 The data was split in a 7:1:2 ratio for respectively training, development and
testing. Association scores are retrieved for lowercased word forms to increase lexical coverage. Com-
mon and proper nouns are typically capitalized in German and were therefore not lowercased.

Results are presented as labeled (LAS) and unlabeled attachment scores (UAS) including punctua-
tion. Accuracies for inversion and prepositions indicate performance on resolving ambiguities. Inversion
accuracy reports correct labeling of subjects and objects in clauses with fronted object. Preposition ac-
curacy comprises all correct heads and labels of prepositional phrases and objects. The test set contains
1,887 cases of inversion (5.82 percent of all clauses) and 31,687 prepositional phrases and objects.

3.2 PMIs in Neural Dependency Parsing

A table of PMIs was generated for dependency triples h r−→ d from the German newspaper taz (393.7M
tokens, 22.8M sentences) and a dump of the German Wikipedia from January 2018 (803.5M tokens,
39.9M sentences), two subcorpora of the TüBa-D/DP treebank (De Kok and Pütz, 2019) parsed by the
De Kok and Hinrichs (2016) parser without association scores. All dependency triples not contained in
the table are mapped to the most neutral value of 0. The PMI table is generated once in linear time. The
same holds for the dependency embeddings described in Section 3.3. Each association score retrieval is
then done in constant time so that the linear time property of parsing remains unchanged.

Model LAS UAS Inversion Preposition
accuracy accuracy

De Kok and Hinrichs (2016) 92.01 93.88 81.03 77.80
+ NPMI, minfreq 5 92.27 94.01 81.93 78.60
+ NPMI, minfreq 50 92.14 93.92 82.25 78.29
+ NPMI, minfreq 100 92.16 93.92 80.72 78.56
+ NPMI, minfreq 5, binary 92.18 93.94 82.57 78.78
+ NPMI, minfreq 50, binary 92.16 93.93 81.93 78.35
+ NPMI, minfreq 100, binary 92.18 93.96 81.67 78.29
+ PNPMI, minfreq 5 92.21 93.99 82.09 78.44
+ PNPMI, minfreq 50 92.19 93.95 81.46 78.66
+ PNPMI, minfreq 100 92.17 93.94 82.25 78.57

Table 2: Parser accuracy (overall, inversion, preposition attachment) for neural dependency parsing with
PMI-based association scores. The NPMI model with minimum frequency 5 achieves the best overall
performance.

3Using the sticker software package: https://github.com/danieldk/sticker.



PMI models with minimum dependency triple frequencies of 5, 50 and 100 have been trained with
both NPMI and PNPMI scores. NPMI models have been tested with and without binary indicator. Re-
sults for the PMI models are given in Table 2.

The best PMI model uses normalized PMI with a minimum frequency of 5. The model outper-
forms the baseline by 0.26 LAS points which is significant in the Wilcoxon test (Dror et al., 2018)
with p < 5.24×10−10. It also improves the LAS by 0.03 points over the best embedding-based model
but the improvement is not statistically significant. Larger improvements can be seen for both sorts of
ambiguity. The best model increases inversion LAS by 1.54 points and preposition LAS by 0.98 points
over the baseline.

3.3 Dependency Embedding Scores in Neural Dependency Parsing

For the embedding-based model, dependency embeddings with 300 dimensions were trained with the
algorithm from Levy and Goldberg (2014a).4 Different embeddings have been trained on pseudo-
projectivized and non-projective versions of taz, Wikipedia, and the German europarl (1.25B tokens
and 42.1M sentences in total). The number of dependency relations varies from 38 non-projective to 212
pseudo-projective relations.

All embedding variants have been trained on regular head-dependent and inverse dependent-head rela-
tions. A fully typed model was trained on context that includes the token typed per dependency relation.
A second semi-typed model includes the token without dependency relations as context. For both mod-
els, variants with and without binary indicator have been evaluated. The binary model uses a simple
binary indicator which labels association scores as default or as being calculated from dependency em-
beddings. A more finegrained triple-binary model for fully typed embeddings evaluates the following
three conditions to true or false: 1) the head word embedding could be retrieved from the focus matrix, 2)
the dependent word embedding, i.e. the combination of the context token and the dependency relation,
could be retrieved from the context matrix, 3) an embedding for the context token could be retrieved
from the focus word matrix, indicating whether there exists a word embedding for the token at all. The
double-binary model for semi-typed embeddings indicates whether an embedding has been found for the
focus and the context token. As the context token is not typed for dependencies in the semi-typed model,
the context matrix contains entries for tokens without the different dependency relations they occur with.

Model LAS UAS Inversion Preposition
accuracy accuracy

De Kok and Hinrichs (2016) 92.01 93.88 81.03 77.80
+ projective, fully typed 92.23 93.97 82.57 78.55
+ projective, fully typed, binary 92.24 93.97 83.36 78.47
+ projective, fully typed, triple-binary 92.16 93.88 83.36 78.62
+ projective, semi-typed 92.11 93.94 80.66 77.99
+ projective, semi-typed, binary 91.98 93.89 80.61 77.71
+ projective, semi-typed, double-binary 92.07 93.93 81.93 77.98
+ non-projective, fully typed 92.17 93.93 81.46 78.17
+ non-projective, fully typed, binary 92.22 93.97 82.20 78.45
+ non-projective, fully typed, triple-binary 92.08 93.86 82.99 78.26

Table 3: Parser accuracy (overall, inversion, preposition attachment) for neural dependency parsing with
embedding-based association scores. The overall best model uses projectivized, fully typed dependency
embeddings with a binary indicator.

Results for parsing with association scores based on dependency embeddings are shown in Table
3. The overall best embedding-based model uses projectivized, fully typed embeddings with a binary
indicator. The model outperforms the baseline parser by 0.23 LAS points, significant in the Wilcoxon

4Using the finalfrontier software package: https://finalfusion.github.io/finalfrontier.



test (p < 1.94×10−7), and remains 0.03 points below the best PMI model. Embedding-based models are
only superior to PMI models when it comes to inversion LAS. There, the best embedding-based model
improves by 2.33 points over the baseline, compared to 1.54 points improvement of the best PMI model.

4 Evaluation

Both the PMI-based and embedding-based models perform better than the baseline. Overall performance
will improve by more correctly solved ambiguous attachments. Lexical associations between more than
two tokens may be necessary to further improve ambiguity resolution. For PP attachment, the compat-
ibility between the preposition, its modifier noun and the verbal or nominal head candidate of the PP
have to be modeled. De Kok et al. (2017) have shown that trilexical preferences help to better capture
attachment preferences of the preposition.

It can also be beneficial to make competing attachment sites available to the parser. Currently, associ-
ation scores are only computed for the two attachment candidates for any given parser state. With beam
search, several attachment candidates can compete in different analyses. The best candidate can then be
chosen from all or the n best candidates (Zhang and Clark, 2008; Andor, 2016).

5 Ambiguity Resolution with Association Metrics

Most parser errors still involve a limited number of dependency relations, as shown in Table 1. Errors
in PP attachment, subjects and objects often can be traced back to problems with resolving ambiguities.
An evaluation of association scores for particular word pairs can show if such scores can be useful in
parsing ambiguous sentences. Table 4 lists PMI- and embedding-based scores for selected word pairs
and dependency relations. Random pairs that are common in everyday language are distinguished from
pairs that occur in subject-object inversion and have been incorrectly attached by the (best-performing
embedding-based) parser. PMIs have been retrieved from the positive normalized PMI table with mini-
mum frequency 5. Embedding-based scores were calculated from projectivized, fully typed dependency
embeddings.

PNPMI Embedding-based Example
Relation Subject Objectacc Subject Objectacc

Random pairs
isst, sie – 0.0617 0.9778 0.9863 Sie isst Spaghetti.
isst, Spaghetti – – 0.1375 0.9996 ‘She eats Spaghetti.’
trinkt, Mann 0.1341 – 0.9883 0.8776 Der Mann trinkt Milch.
trinkt , Milch – 0.3627 0.9509 0.9997 ‘The man drinks milk.’
weiß, Computer – – 0.9280 0.1397 Ein Computer weiß alles.
weiß, alles – 0.1995 0.9847 0.9948 ‘A computer knows everything.’
Incorrectly attached inversion pairs
erstatteten, Angeklagten – – 0.9917 0.9545 Strafanzeigen erstatteten die Angeklagten
erstatteten, Strafanzeige 0.4645 0.5604 0.9566 0.9996 ‘The defendants pressed criminal charges’
wollte, niemand 0.1906 0.1750 0.9940 0.9366 Nur wollte den Krempel niemand.
wollte, Krempel – – 0.5458 0.0008 ‘But nobody wanted that junk.’
tragen, Studierenden 0.0794 – 0.9645 0.7761 Das Risiko tragen die Studierenden.
tragen, Risiko 0.0825 0.2540 0.9269 0.9972 ‘The students take the risk.’

Table 4: PMI and embedding-based scores for random and incorrectly attached dependency triples.

Problems of data sparsity can indeed be solved by using embedding-based rather than PMI-based
scores, as Table 4 shows. In spite of a low frequency threshold of 5, the PMI table is very sparse
compared to the embedding-based scores. However, when a PMI is available scores indicate the correct
tendency in the majority of the cases. Considering that all unknown values are equal to the default PMI
of 0.0, the tendencies are correct for e.g. trinkt ‘drinks’ which prefers to attach Mann ‘man’ as the
subject and Milch ‘milk’ as the direct object. The tendencies of embedding-based scores are mostly
correct, such as the preference of Spaghetti ‘spaghetti’ to attach to isst ‘eats’ as a direct object. Wider



lexical coverage of embedding-based models may not lead to any gains over PMI-based models partially
due to the architecture of the neural dependency parser which already encodes information about co-
occurrences in the distributional representations of the input tokens.

6 Conclusion

This paper presented a technique to include association metrics into a neural transition-based dependency
parser for German. PMI and embedding-based association scores have been tested. Both PMI-based and
embedding-based models significantly outperform the baseline. In spite of the wider lexical coverage of
embedding-based models, PMI models achieve accuracies on a par with embedding-based models.

A qualitative analysis revealed that association scores in parts provide useful disambiguation cues to
the parser. Follow-up experiments in other languages with relatively free word order and moderately
complex morphology will further investigate the effect of association metrics on neural transition-based
dependency parsing. Due to its similarity to German, Dutch will be the first language to be exam-
ined. Trilexical rather than bilexical preferences could further improve results. Keeping more competing
attachment candidates through beam search is another promising direction for future work. As an al-
ternative to association scores, a compatibility model that is directly integrated into the parser could be
considered.
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Appendix A. Parser Inputs

The parser uses vector representations of the word (TOKEN), its part-of-speech tag (TAG), dependency
relation (DEPREL), characters (CHAR) and topological field (TF) as inputs. Different positions on the stack
and buffer are addressed for each feature. The full list of features is provided below. [BUFFER 0], for
example, refers to the first token on the buffer, [STACK 0, LDEP 0] addresses the leftmost dependent of
the token on top of the stack. Character representations are included for the word prefix and suffix each
of length 4.

[STACK 0] TOKEN
[STACK 1] TOKEN
[STACK 2] TOKEN
[STACK 3] TOKEN
[BUFFER 0] TOKEN
[BUFFER 1] TOKEN
[BUFFER 2] TOKEN
[STACK 0, LDEP 0] TOKEN
[STACK 1, LDEP 0] TOKEN
[STACK 0, RDEP 0] TOKEN
[STACK 1, RDEP 0] TOKEN

[STACK 0] TAG
[STACK 1] TAG
[STACK 2] TAG
[STACK 3] TAG
[BUFFER 0] TAG
[BUFFER 1] TAG
[BUFFER 2] TAG
[STACK 0, LDEP 0] TAG
[STACK 1, LDEP 0] TAG
[STACK 0, RDEP 0] TAG
[STACK 1, RDEP 0] TAG

[STACK 0] DEPREL
[STACK 0, LDEP 0] DEPREL
[STACK 1, LDEP 0] DEPREL
[STACK 0, RDEP 0] DEPREL
[STACK 1, RDEP 0] DEPREL

[STACK 0] CHAR 4 4
[STACK 1] CHAR 4 4
[BUFFER 0] CHAR 4 4

[STACK 0] TF
[STACK 1] TF
[STACK 2] TF
[STACK 3] TF
[BUFFER 0] TF
[BUFFER 1] TF
[BUFFER 2] TF


