Transferring NLP models across languages and domains

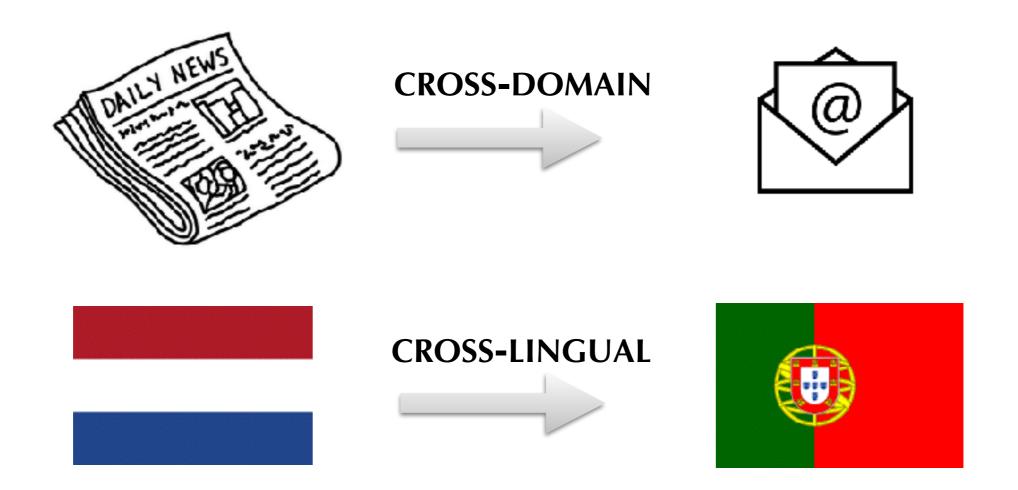
Barbara Plank ITU, Copenhagen, Denmark

August 28, 2019, #SyntaxFest2019 Paris

Statistical NLP: The Need for Data Χ the Det dog NOUN Y = f(X)ML barks VERB

Adverse Conditions

• Data dependence: our models dreadfully lack the ability to generalize to new conditions:



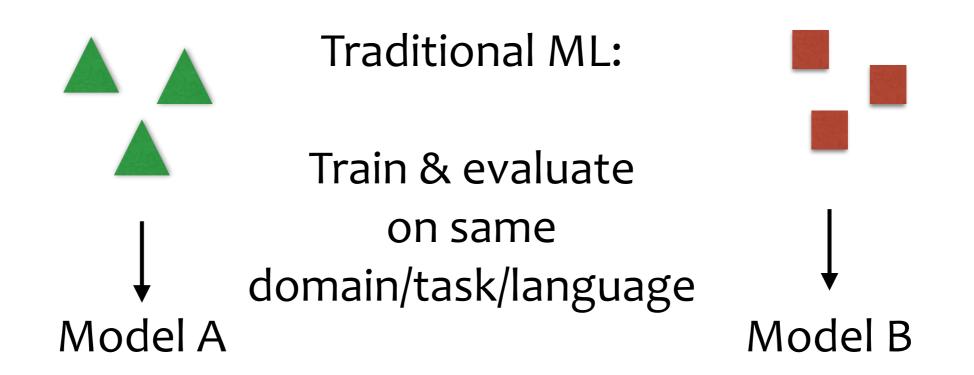
Data variability

Training and test distributions typically differ (are not i.i.d.)

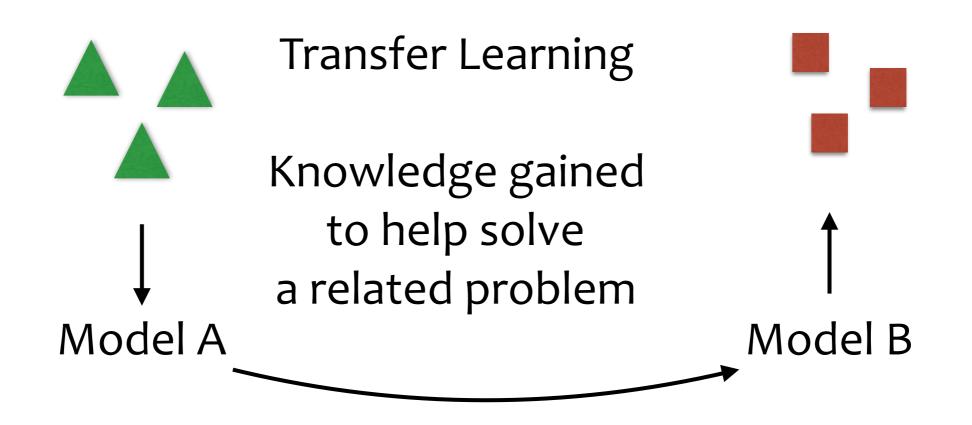
- Domain changes
- Extreme case of adaptation: a new language

What to do about it?

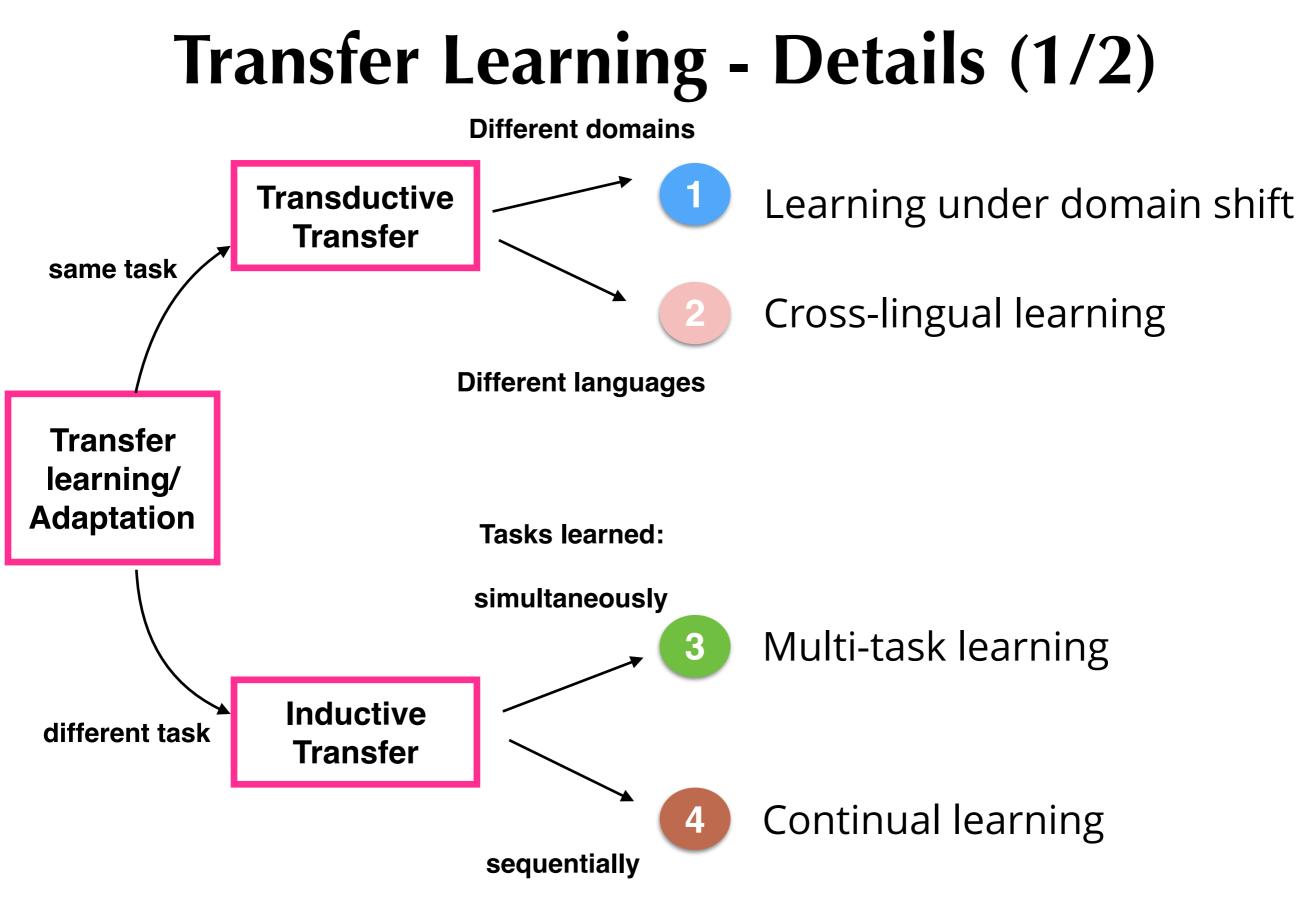
Typical setup



Adaptation / Transfer Learning



Adapted from Ruder (2019)



Transfer Learning - Details (2/2)

• $P(\mathcal{X}_{src}) \neq P(\mathcal{X}_{trg})$ different text types

Domain Adaptation (DA)

• $\mathcal{X}_{src}
eq \mathcal{X}_{trg}$ different languages

Cross-lingual Learning (CL)

• $\mathcal{Y}_{src}
eq \mathcal{Y}_{trg}$ different tasks

Multi-task Learning (MTL)

Timing/Availability of tasks

Notation:

- Domain $\mathcal{D}=\{\mathcal{X},P(\mathcal{X})\}$ where \mathcal{X} is the feature space, $P(\mathcal{X})$ prob. over e.g., BOW
- Task $\mathcal{T} = \{\mathcal{Y}, P(\mathcal{Y}|\mathcal{X})\}$ where \mathcal{Y} is the label space (e.g., +/-)

Roadmap

Domains: Learning to select data

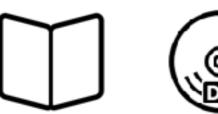
Languages: Cross-lingual learning

Multi-task learning

Learning to select data for transfer learning with Bayesian optimization

Sebastian Ruder and Barbara Plank EMNLP 2017

Data Setup: Multiple Source Domains



Target domain

Source domains

How to select the most relevant data?

Motivation

Why? Why don't we just train on all source data?

Prevent negative transfer

• e.g. "predictable" is negative for $igcup_{}$, but positive in $igcup_{}$

Prior approaches:

- use a single similarity metric in isolation;
- focus on a single task.

Our approach

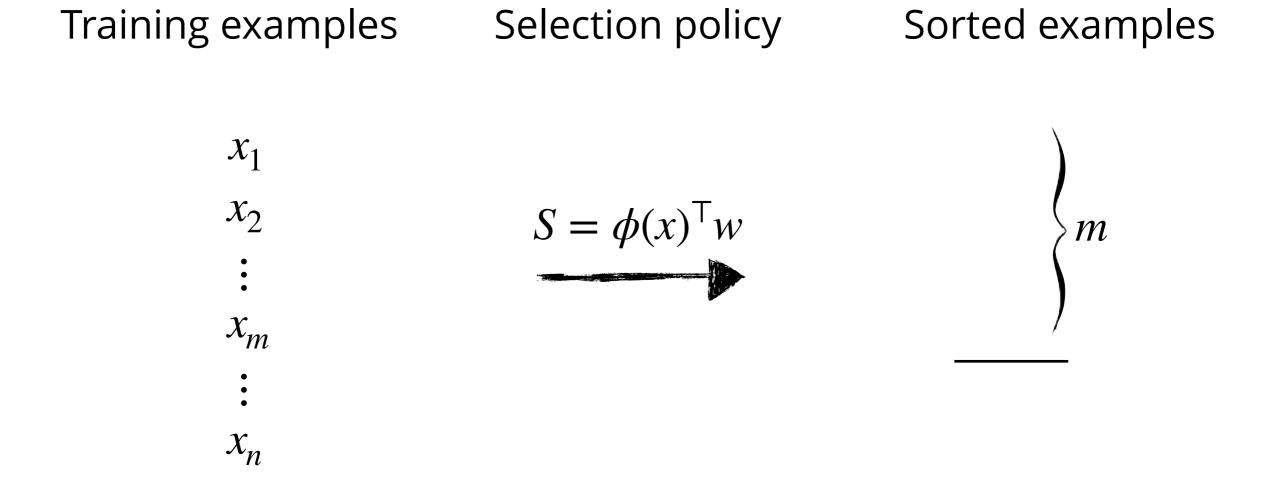
Intuition

 Different tasks and domains require different notions of similarity.

Idea

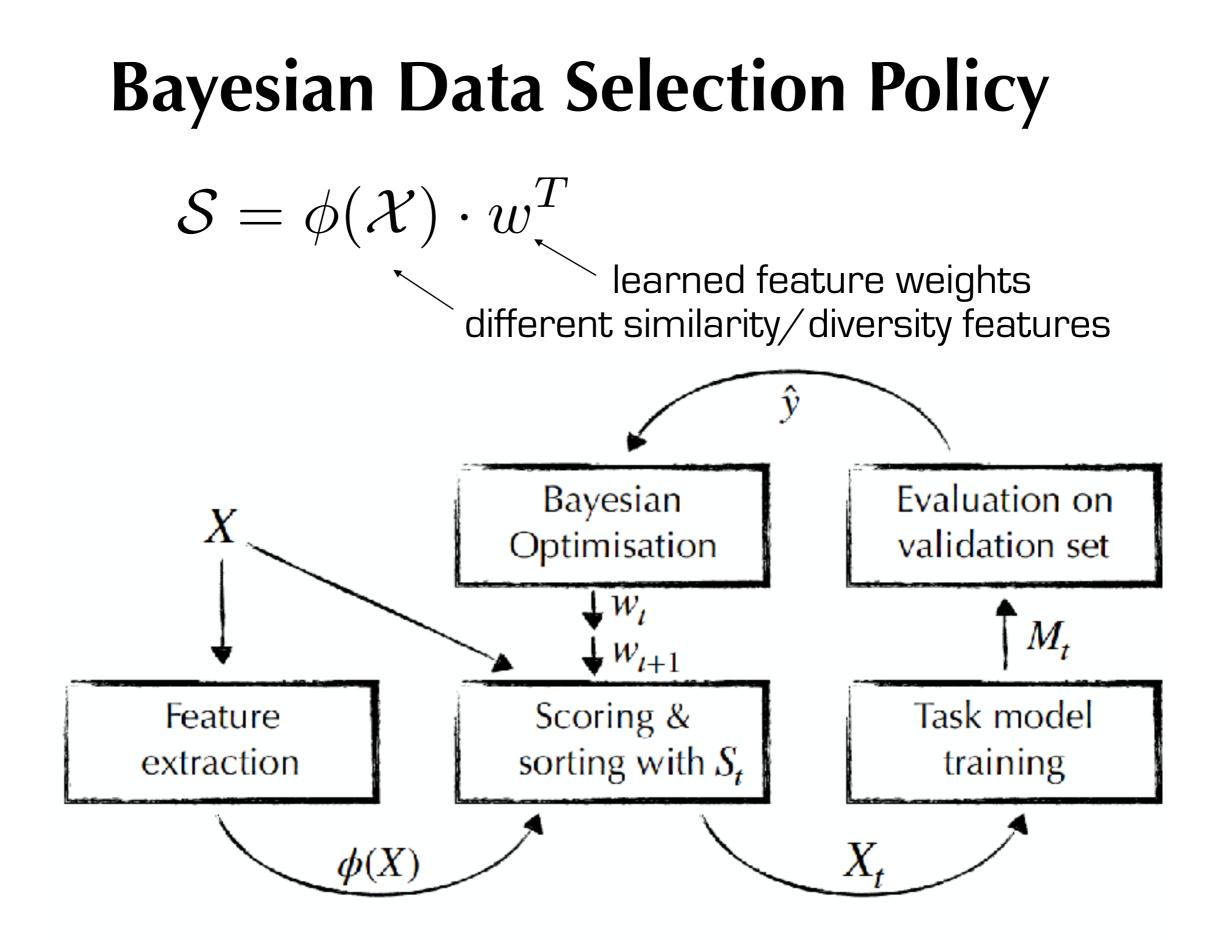
• Learn a data selection policy using Bayesian Optimization.

Our approach



Related: curriculum learning (Tsvetkov et al., 2016)

Tsvetkov, Y., Faruqui, M., Ling, W., & Dyer, C. (2016). Learning the Curriculum with Bayesian Optimization for Task-Specific Word Representation Learning. In *Proceedings of ACL 2016*.



Features $\phi(X)$

• Similarity:

Jensen-Shannon, Rényi div, Bhattacharyya dist, Cosine sim, Euclidean distance, Variational dist

- Representations:

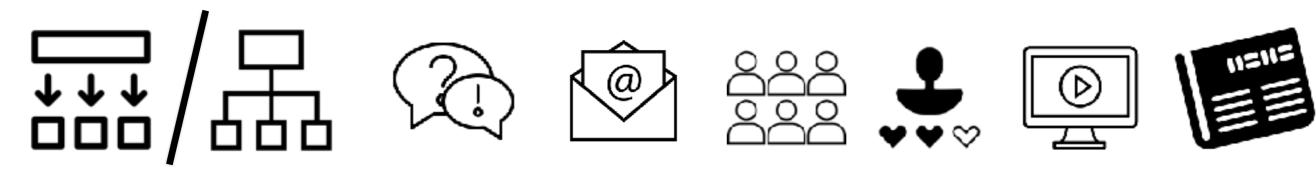
Term distributions, Topic distributions, Word embeddings (Plank, 2011)

• **Diversity**: #types, TTR, Entropy, Simpson's index, Rényi entropy, Quadratic entropy

Data & Tasks

Three tasks: Domains: Image: Second secon

Sentiment analysis on Amazon reviews dataset (Blitzer et al., 2007)

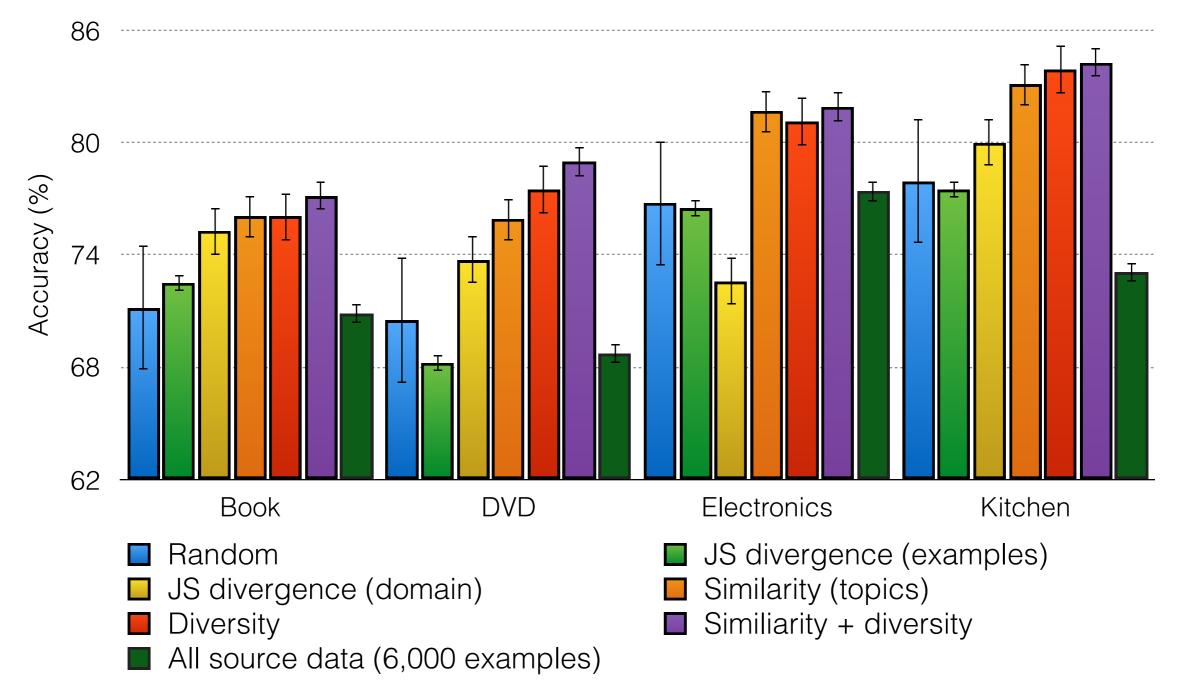


POS tagging and dependency parsing on SANCL 2012 (Petrov and McDonald, 2012)

Blitzer, J., Dredze, M., & Pereira, F. (2007). Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In *Proceedings of ACL 2007*.
Petrov, S., & McDonald, R. (2012). Overview of the 2012 shared task on parsing the web. In *Notes of the First Workshop on Syntactic Analysis of Non-Canonical Language (SANCL)*.

Sentiment Analysis Results

Selecting 2,000 from 6,000 source domain examples



• Selecting relevant data is useful when domains are very different.

POS Tagging Results

97

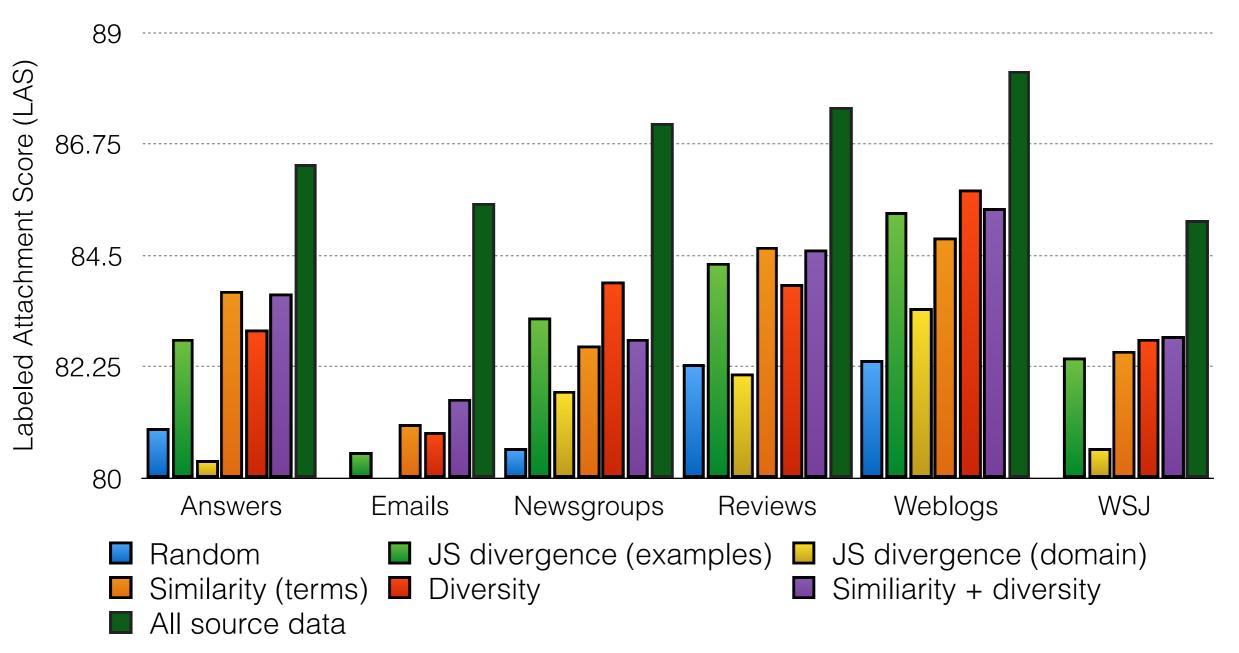
Selecting 2,000 from 14-17.5k source domain examples

95.5 Accuracy (%) 94 92.5 91 Emails Weblogs WSJ Newsgroups **Reviews** Answers Random JS divergence (examples) JS divergence (domain) Similarity (terms) Diversity Similiarity + diversity All source data

 Learned data selection outperforms static selection, but is less useful when domains are very similar.

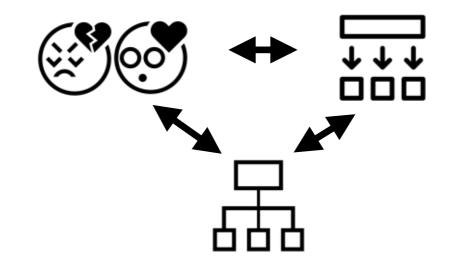
Dependency Parsing Results

Selecting 2,000 from 14-17.5k source domain examples



Do the weights transfer?

Cross-task transfer



		Target tasks		
Feature set	$\mathcal{T}_{\mathcal{S}}$	POS	Pars	SA
Sim	POS	<u>93.51</u>	83.11	74.19
Sim	Pars	92.78	<u>83.27</u>	72.79
Sim	SA	86.13	67.33	<u>79.23</u>
Div	POS	<u>93.51</u>	83.11	69.78
Div	Pars	<u>93.02</u>	<u>83.41</u>	68.45
Div	SA	90.52	74.68	<u>79.65</u>
Sim+div	POS	93.54	83.24	69.79
Sim+div	Pars	<u>93.11</u>	<u>83.51</u>	72.27
Sim+div	SA	89.80	75.17	80.36

Take-aways

- Domains & tasks have different notions of similarity.
 Learning a task-specific data selection policy helps.
 - Preferring certain examples is mainly useful when domains are dissimilar.
- ╦┿╓
- The learned policy transfers (to some extent) across models, tasks, and domains

Roadmap

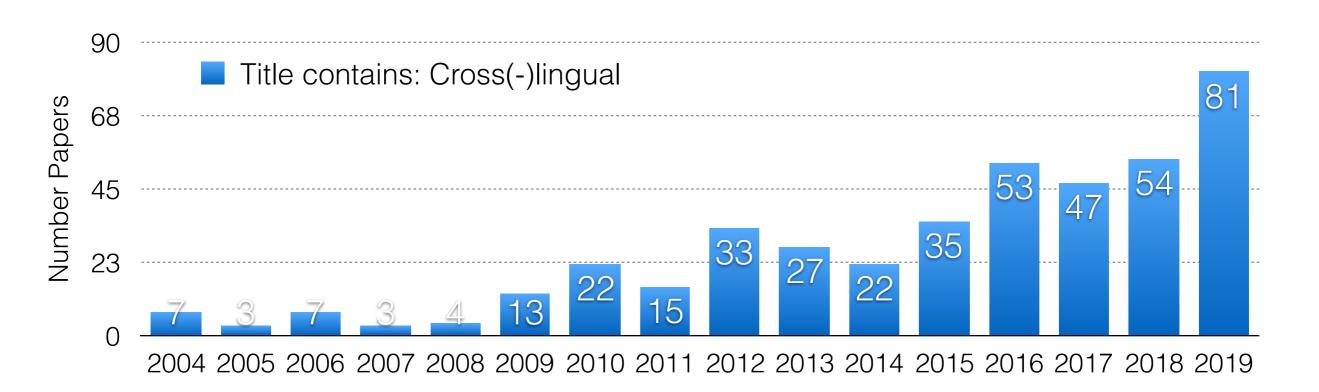
Domains: Learning to select data

Languages: Cross-lingual learning

Multi-task learning

Oross-lingual learning is on the rise

Papers in the ACL anthology (from 2004)



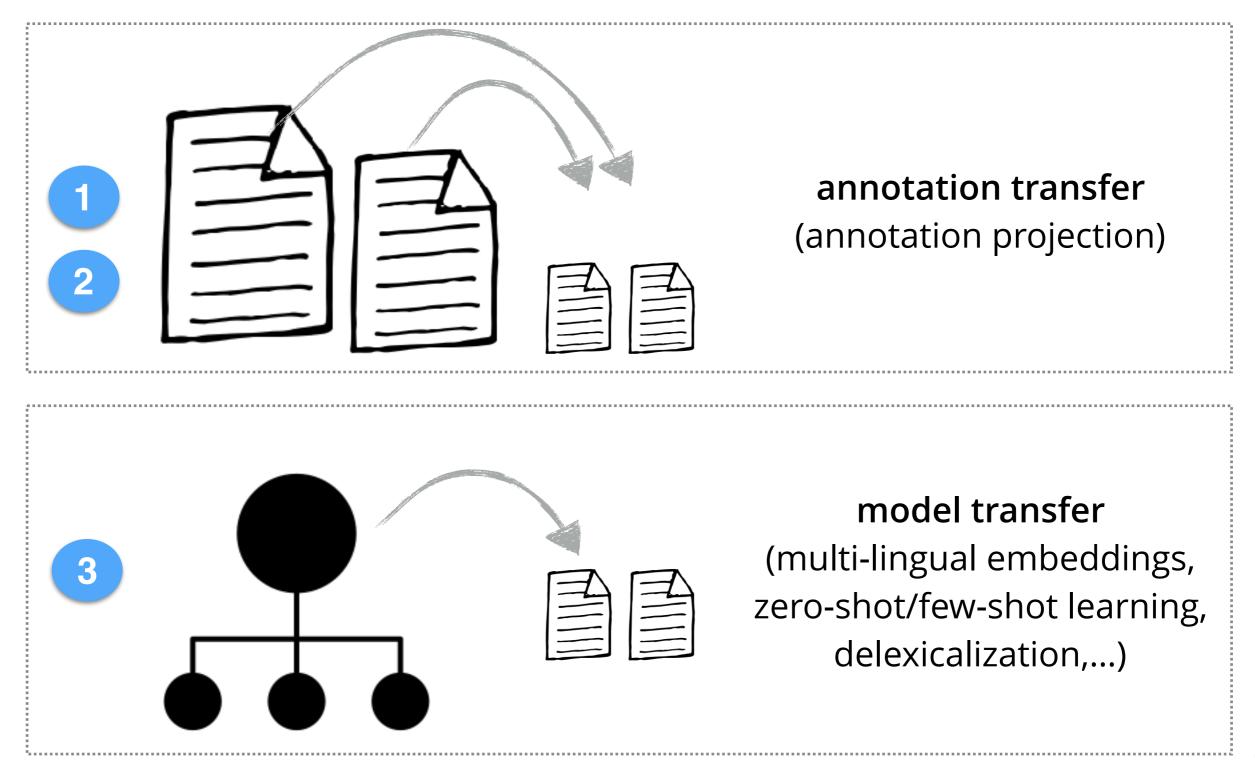
Includes many advances on cross-lingual representations,
 e.g. see ACL 2019 tutorial (Ruder et al., 2019)

Motivation

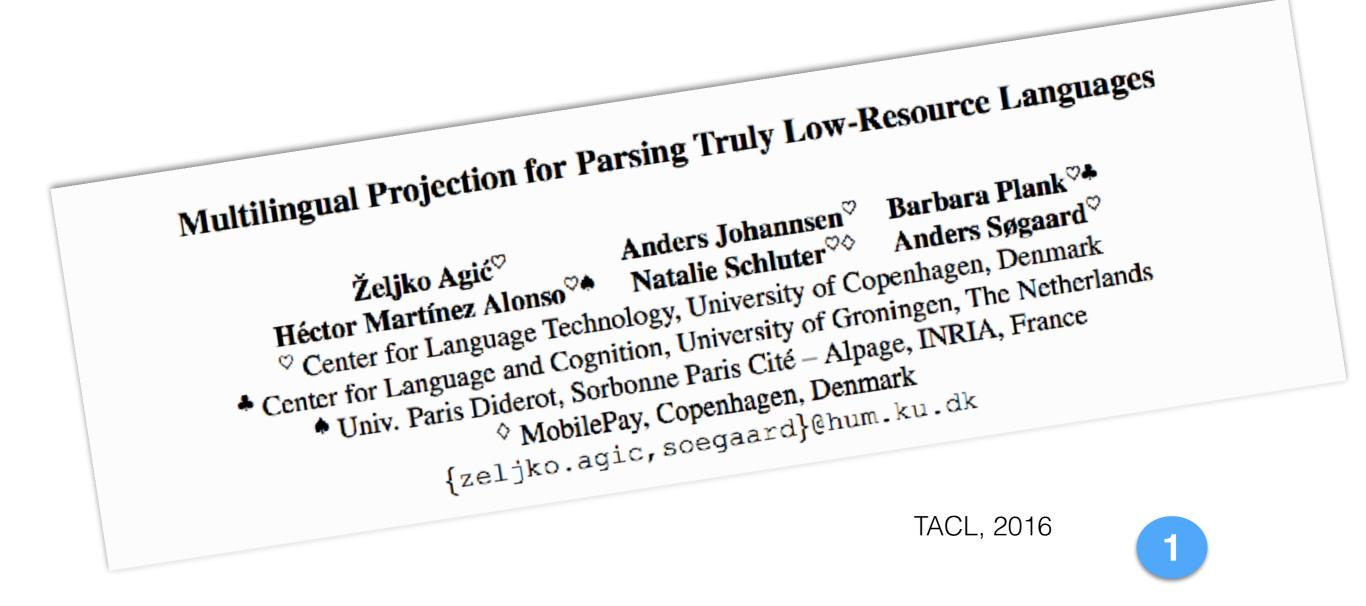
We want to process **all** languages. Most of them are severely under-resourced.

How to build taggers, parsers, etc. for those?

Approaches



Multi-Source Annotation Projection for Dependency Parsing

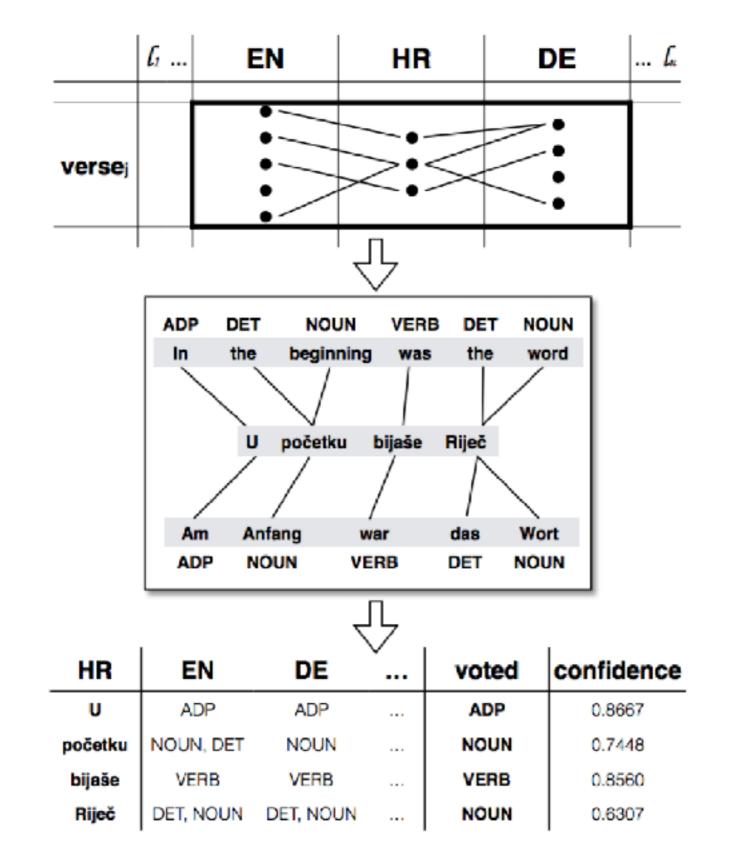


Annotation projection

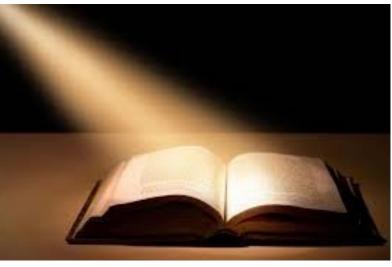
Was machst du heute? Was machst du heute? word alignments Che fesa ncuei ? PRON VERB ADV P

e.g., Hwa et al. (2005)

Multi-Source Annotation Projection



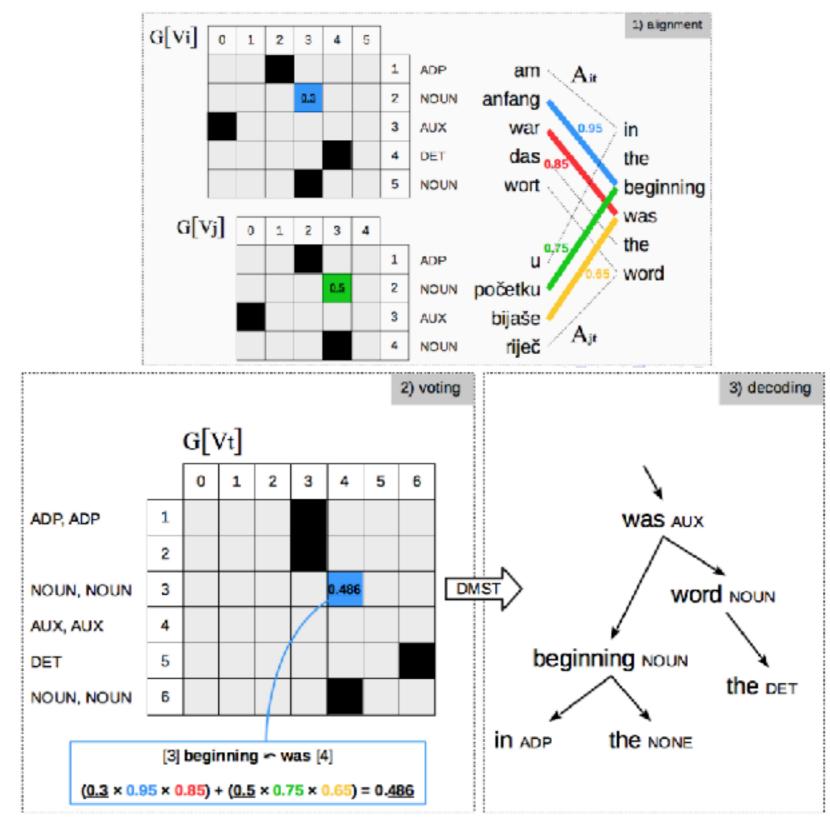
Bible:



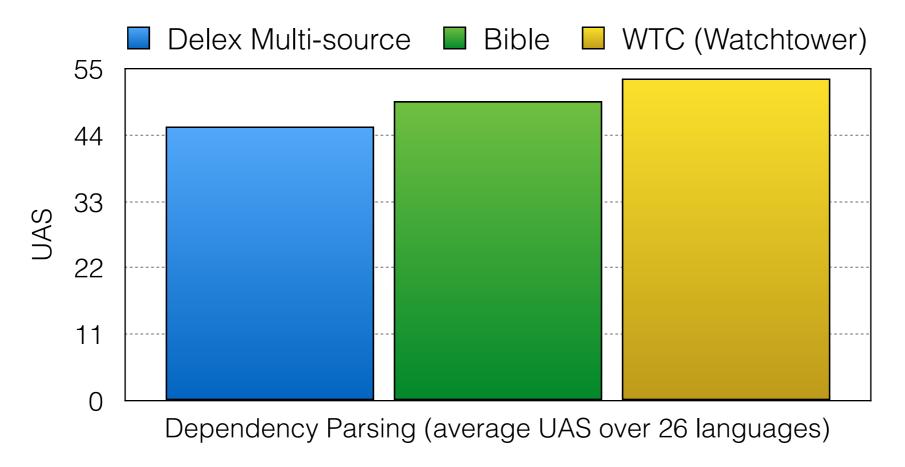
(data x languages)

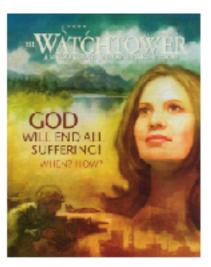
Project from 21
 source languages
 (Agić et al., 2015; 2016)

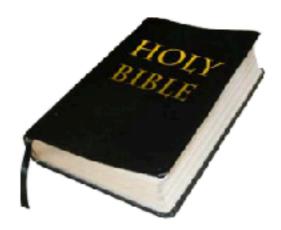
Approach: Projecting dependencies



Results



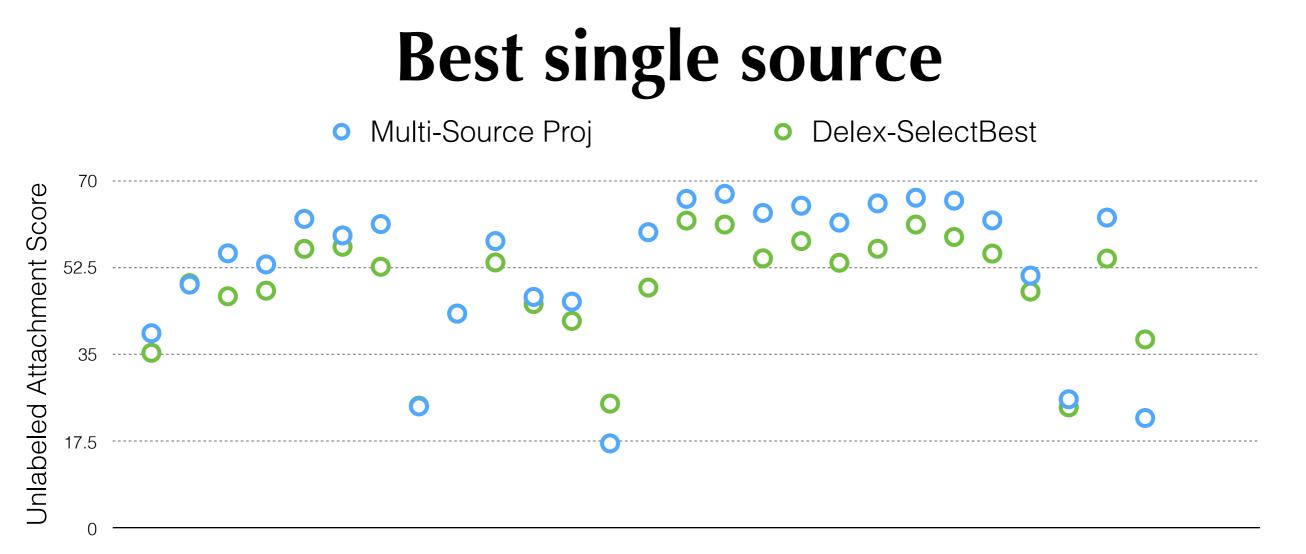




EBC: hath, saith, hast, spake, yea, cometh, iniquity, wilt, smote, shew, begat, doth, lo, hearken, thence, verily, neighbour, goeth, shewed, giveth, smite, didst, wherewith, knoweth, night

WTC: bible, does, however, says, today, during, show, human, later, important, really, humans, meetings, personal, states, future, fact, relationship, result, attention, someone, century, attitude, article, different

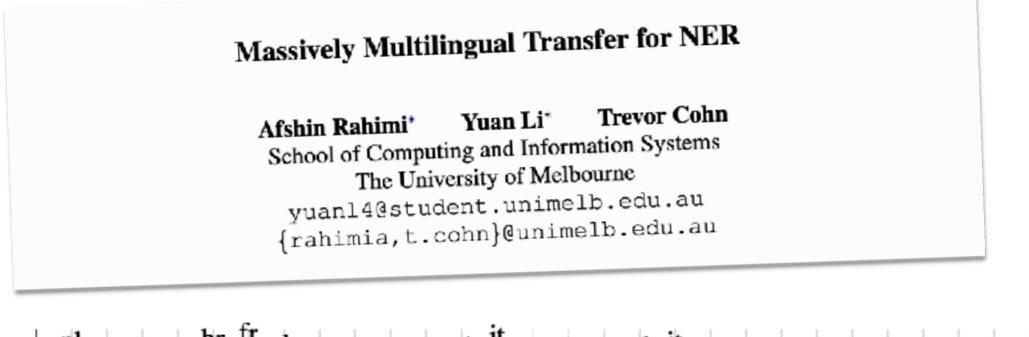
Table 1: The 25 most frequent words exclusive to the English Bible or Watchtower.



- Single best can be better than multi-source
- Typologically closest language is not always the best (Lynn et al., 2014) (Indonesian is best for Irish in delexicalized transfer)
 - Similar recent findings on NER

Rahimi et al., ACL, 2019

Interim discussion (1/2)



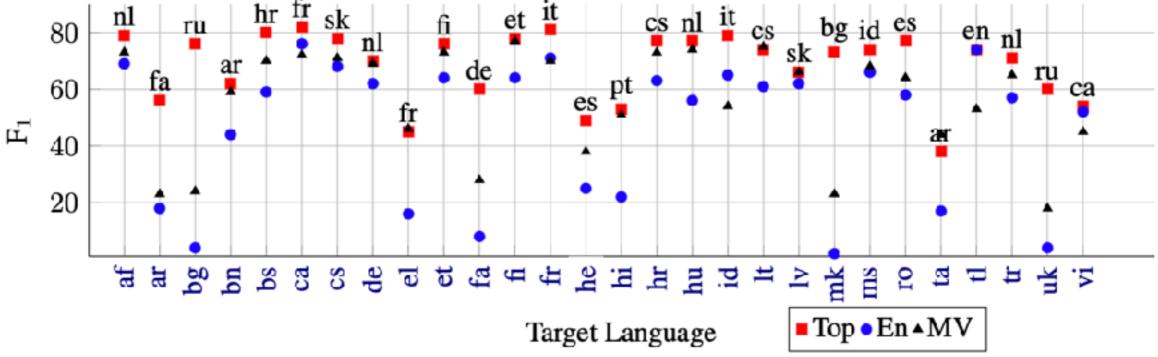


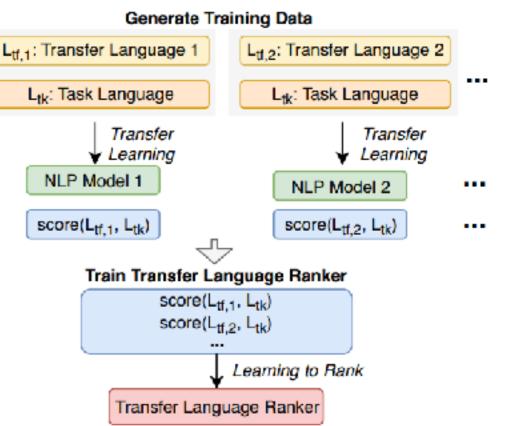
Figure 2: Best source language (\blacksquare) compared with en (\bigcirc), and majority voting (\blacktriangle) over all source languages in terms of F₁ performance in direct transfer shown for a subset of the 41 target languages (x axis). Worst transfer score, not shown here, is about 0. See §3 for details of models and datasets.

How to automatically select the best source parser?

Lin et al., ACL, 2019

Interim discussion (2/2)

- Data-dependent features (some similar to Ruder & Plank, 2017) including word/subword overlap, data size
- Data-independent features (Geographic/Genetic distance etc)

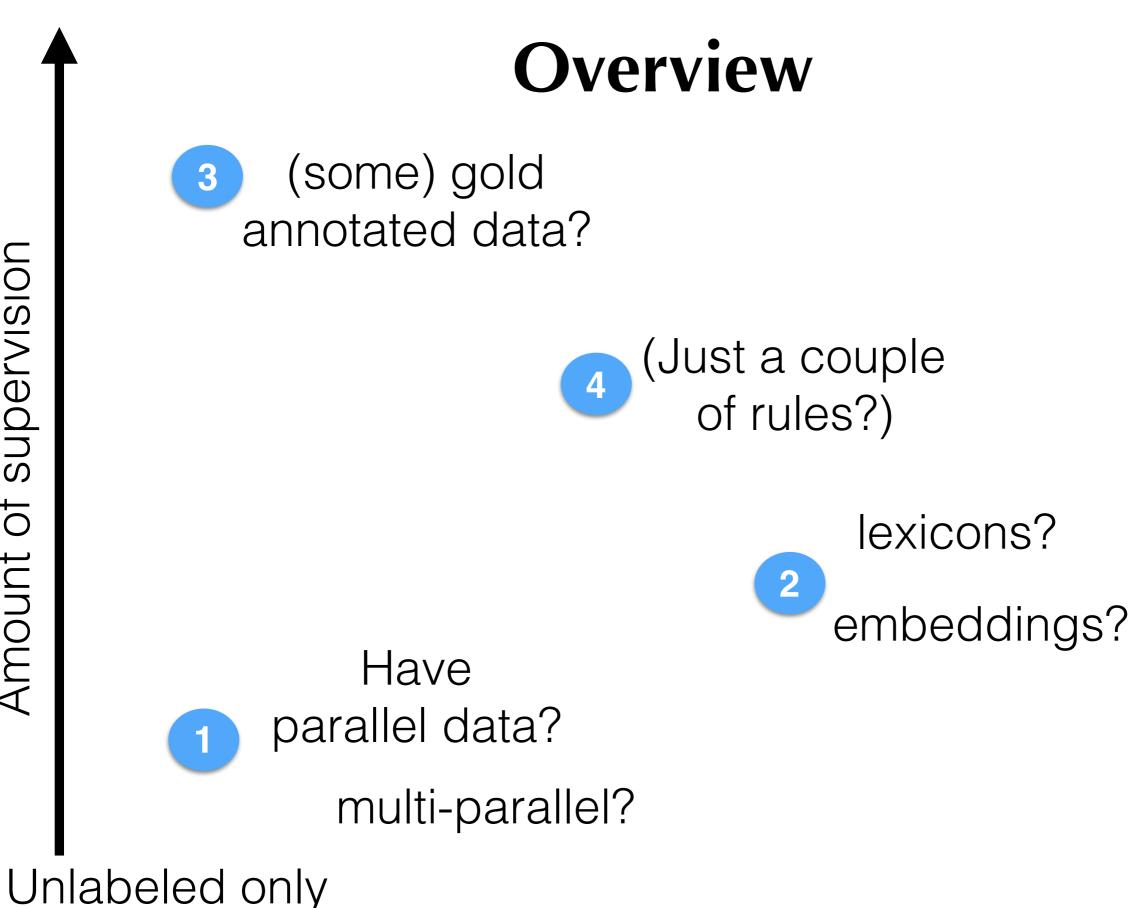


Interim discussion: Results

- Evaluation on
 4 NLP tasks, including parsing (DEP)
- For Dependency Parsing:
 - geographic
 > WALS syntactic features
 - Geographic and word overlap most indicate features

	Method	MT	EL	POS	DEP
dataset	word overlap o_w	28.6	30.7	13.4	52.3
	subword overlap o_{sw}	29.2	_	_	_
ata	size ratio s_{tf}/s_{tk}	3.7	0.3	9.5	24.8
p	type-token ratio d_{ttr}	2.5	-	7.4	6.4
۵	genetic d_{gen}	24.2	50.9	14.8	32.0
distance	syntactic d_{syn}	14.8	46.4	4.1	22.9
sta	featural d_{fea}	10.1	47.5	5.7	13.9
ib	phonological d_{pho}	3.0	4.0	9.8	43.4
ling.	inventory d_{inv}	8.5	41.3	2.4	23.5
li	geographic d_{geo}	15.1	49.5	15.7	46.4
LA	LANGRANK (all) LANGRANK (dataset) LANGRANK (URIEL)		63.0	28.9	65.0
LA			17.0	26.5	65.0
LA			58.1	16.6	59.6

Table 1: Our LANGRANK model leads to higher average NDCG@3 over the baselines on all four tasks: machine translation (MT), entity linking (EL), part-ofspeech tagging (POS) and dependency parsing (DEP).



Lexical Resources for Low-Resource POS tagging in Neural Times

NoDaLiDa 2019 & EMNLP 2018 Plank & Klerke, 2019; Plank & Agic, 2018

More and more evidence is appearing that integrating **symbolic** lexical knowledge into neural models aids learning

Question: Does neural POS tagging benefit from lexical information?

Lexicons

Wiktionary

シ み ぷ え み ぷ ず 维 切 Wiktionary The free dictionary

Unimorph

Secure https://unimorph.github.io

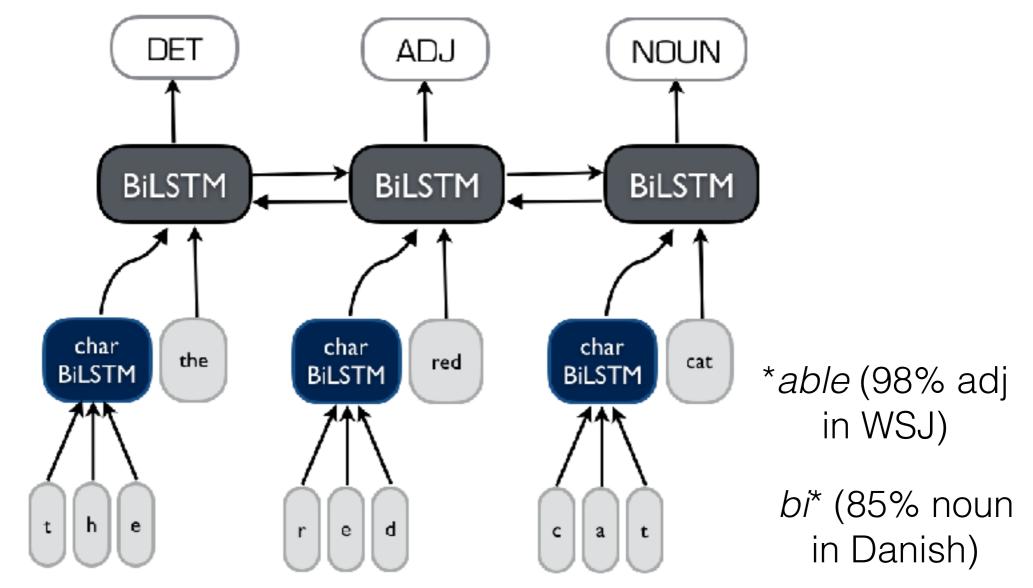
Annotated Languages

The following 51 languages have been annotated according to the UniMorph schema. Missing parts of speech will be filled in soon.

	Language	ISO 639-3	Forms	Paradigms	Nouns	Verbs	Adjectives	Source L	icense
	Albanian	sqi	33483	589	~	~		w	
6	Arabic	ara	140003	4134	~	•	~	W	
	Armenian	hye	338461	7033	~	¥	¥	W	
26	Basque	eus	11889	26		¥			
	Bengali	ben	4443	136	¥	¥		W	
	Bulgarian	bul	55730	2468	✓	v	¥	W	
	Catalan	cat	81576	1547		•		w	
-	Central Kurdish	ckb	22990	274	~	•	v		
	Czech	ces	134527	5125	~	¥	×	W	
	Danish	dan	25503	3193	~	¥		W	• 🕤
	Dutch	nld	55467	4993		¥	¥	W	

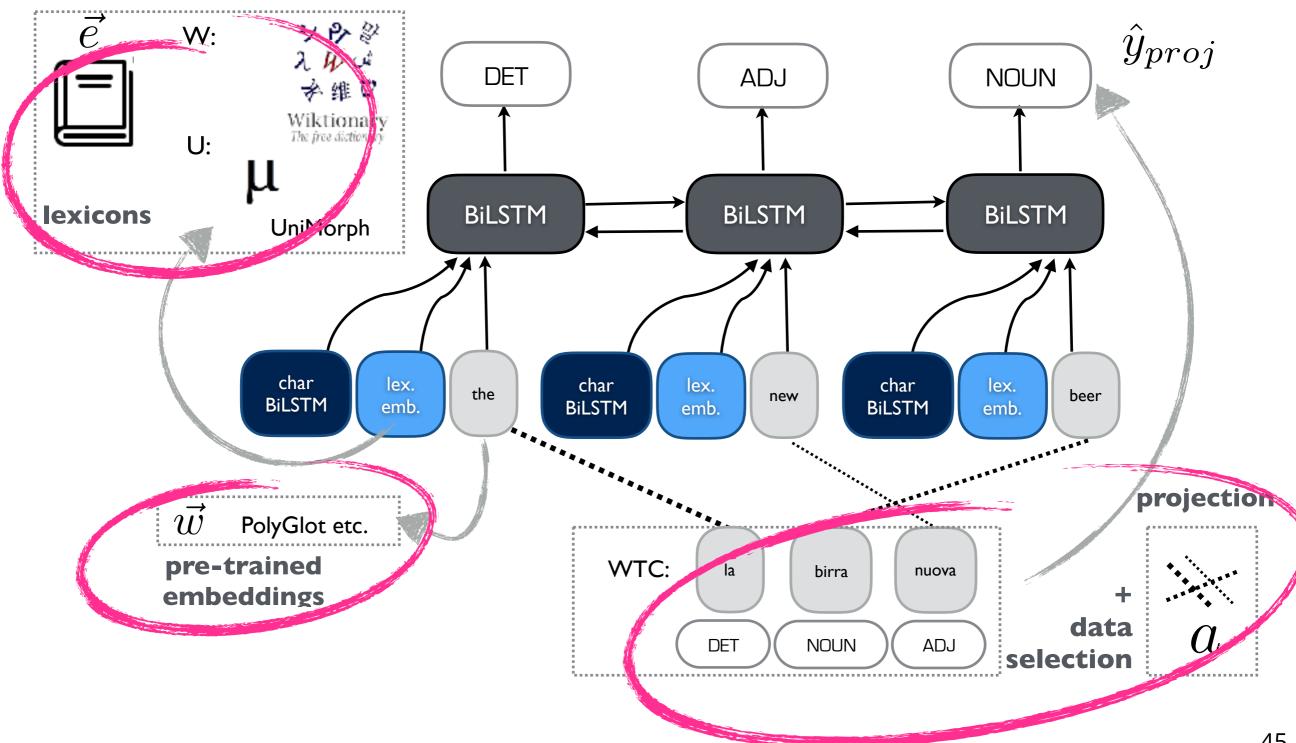
Base bi-LSTM model

 Hierarchical bi-LSTM with word & character embeddings (Plank et al., 2016)

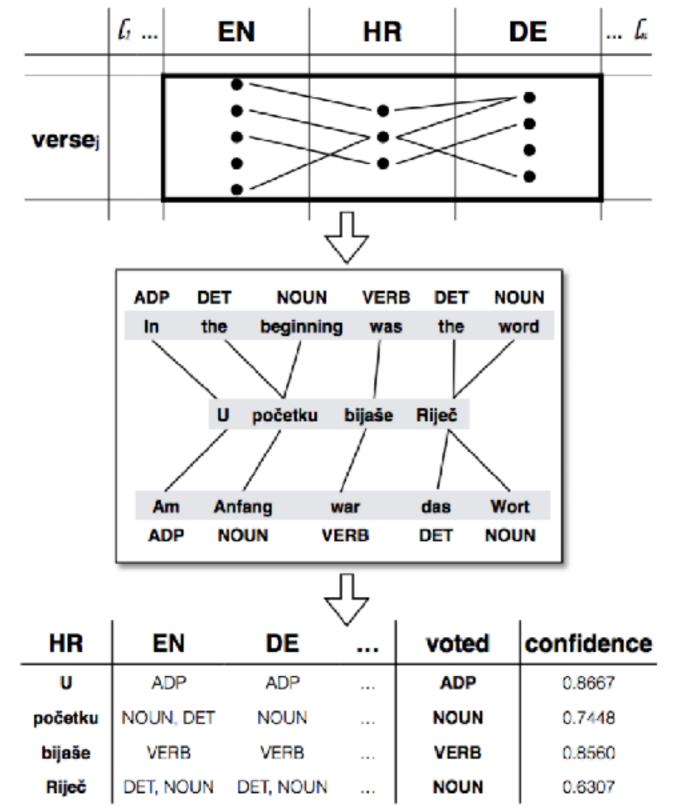


How far do we get with an "all-you-can-get" approach to low-resource POS tagging?

Distant Supervision from Disparate Sources (DsDs)



Multi-source Annotation Projection



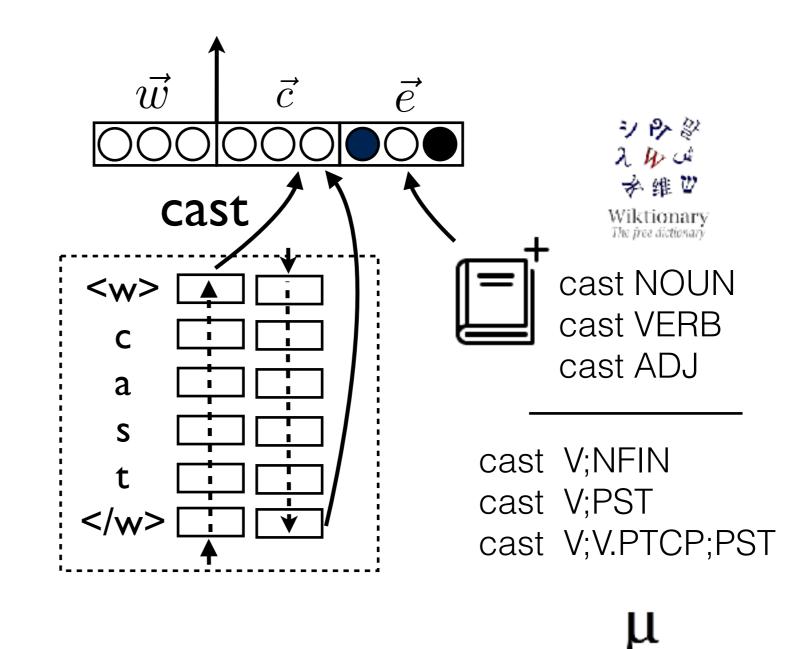
(Agić et al., 2015; 2016)

- Watchtower corpus
 (WTC), 300+ languages
- Project from 21
 source languages
- Select instances by word-alignment
 coverage

Integrating lexical information

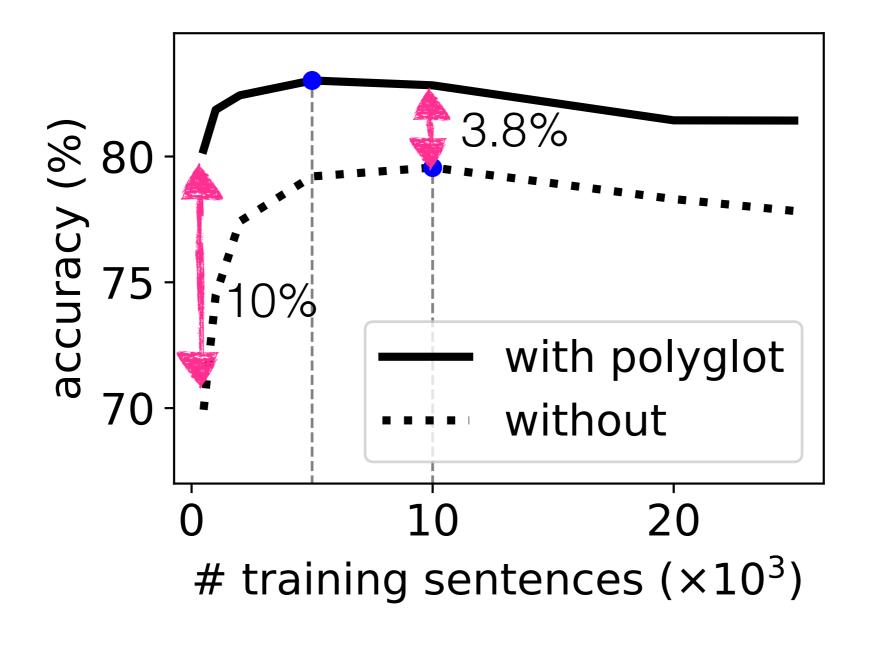
n-hot encoding (Benoit & Martinez Alonso, 2017)

- Our approach:
 embed the lexicon
- Sources:
 Wiktionary
 and Unimorph



Results

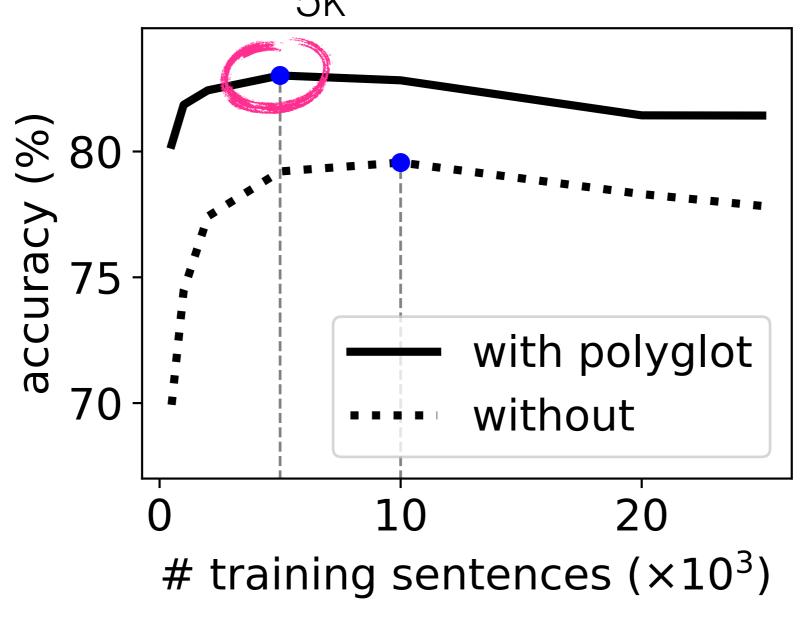
Embedding initialization



Means over 21 languages

(each point is an average over 3 runs, for random: with 5 random samples)

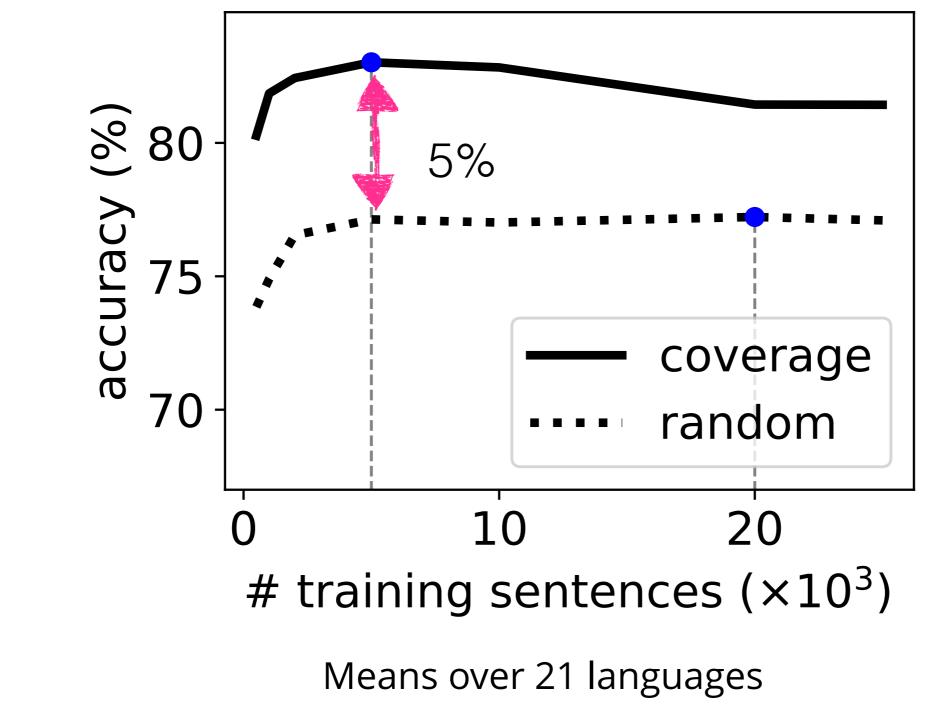
Less data is better than adding more (noise)



Means over 21 languages

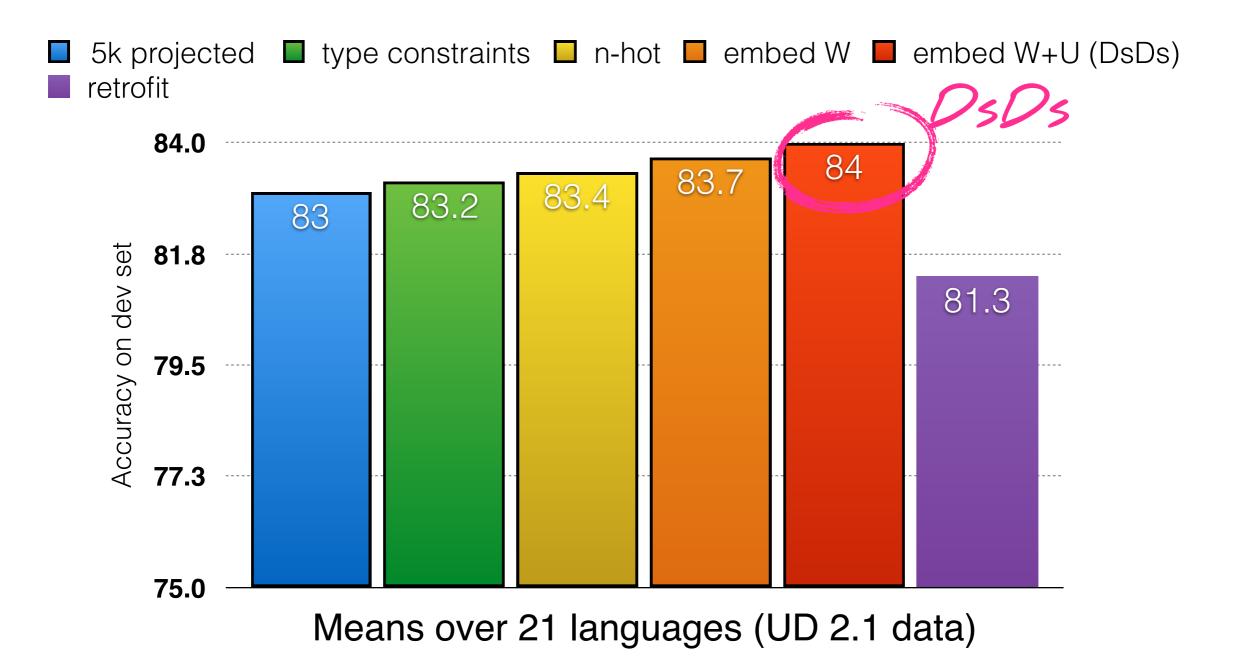
(each point is an average over 3 runs, for random: with 5 random samples)

Coverage-based Data Selection



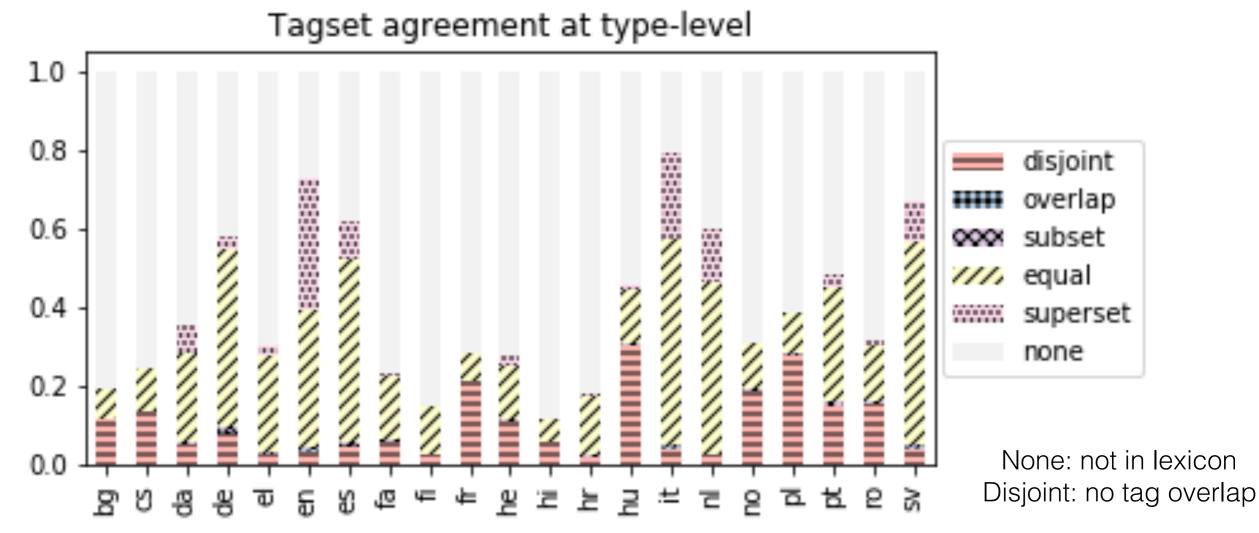
(each point is an average over 3 runs, for random: with 5 random samples)

Inclusion of Lexical information



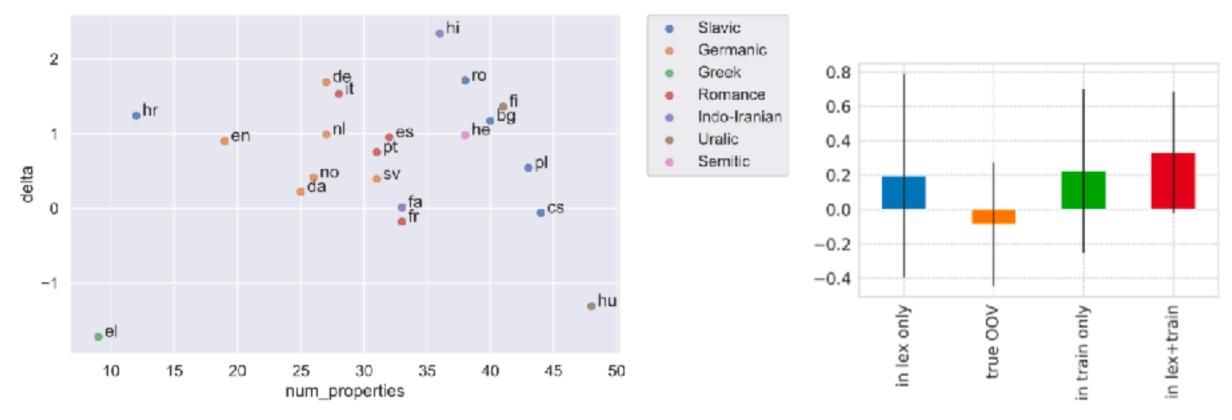
Analysis: Treebank tag set vs lexicon

(inspired by Li et al., 2012)



- For languages where disjoint is low, Type constraints help typically (Greek, English, Croatian, Dutch)
- More implicit use by DSDS helps on languages with high dict coverage and low tag set agreement (e.g., Danish, Dutch, Italian) and languages with low dictionary coverage (such as Bulgarian, Hindi, Croatian, Finnish)

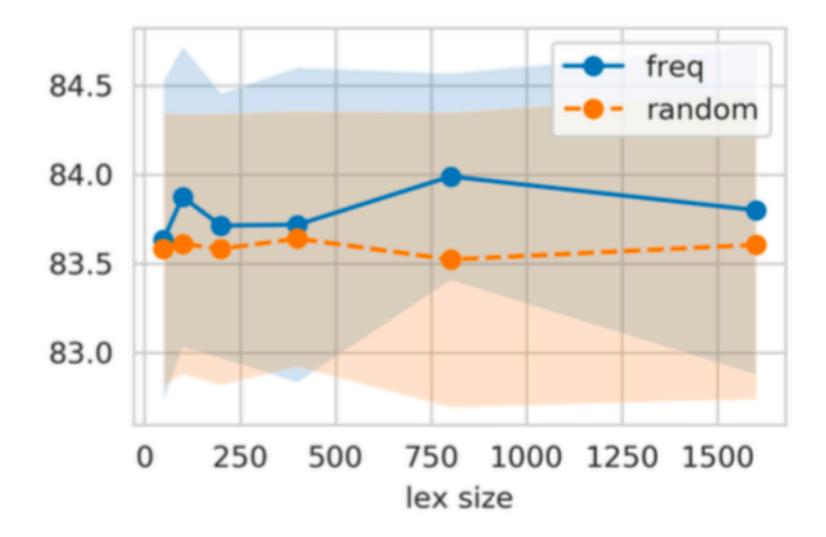
Analysis: Coverage?



(a) Absolute improvement (delta) vs number of dictionary properties (ρ =0.08). (b) Absolute improvement per OOV category (21 languages).

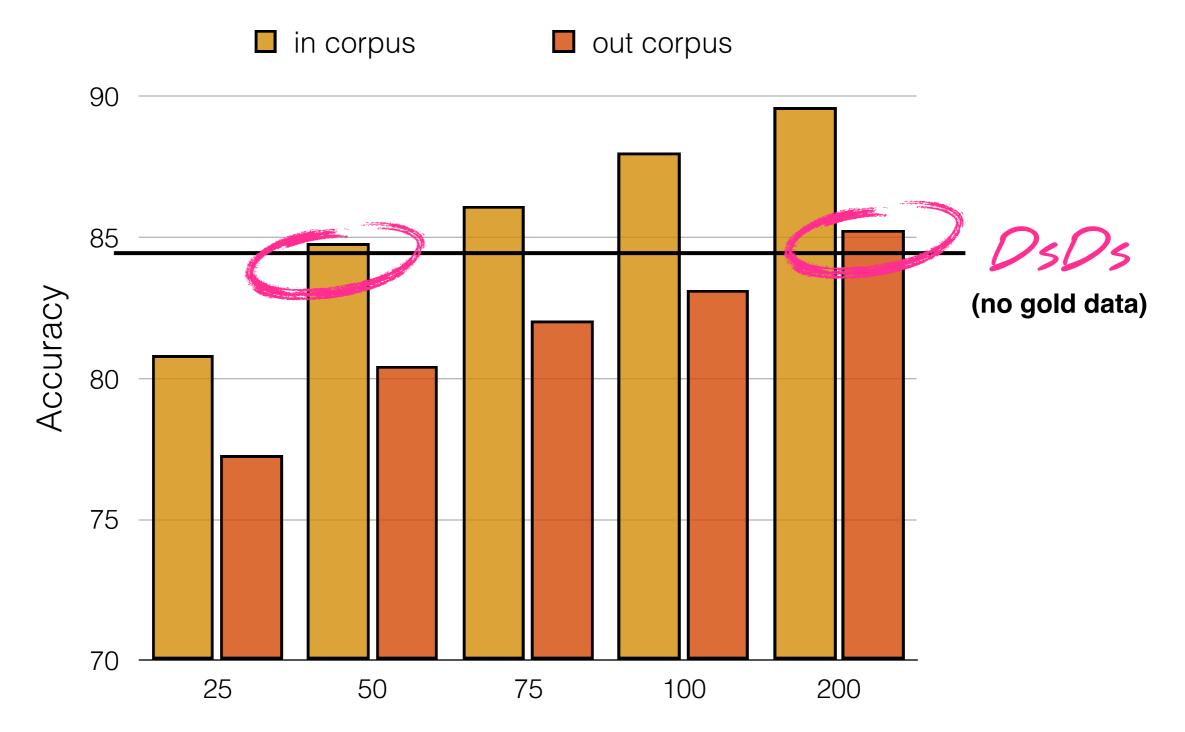
Coverage is only part of the explanation

Analysis: Learning curves over dictionary size



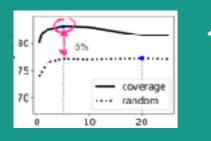
(a) Average effect over 21 languages of high-freq and random dictionaries

How much gold data?

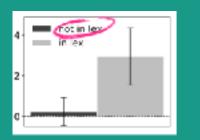


(Means over 18 languages for which we had both in- and out-corpus gold data)

Take-aways



1. **Coverage-based data selection** boosts projection performance (+5% on average)



2. Lexical information improves neural POS tagging beyond the lexicon's coverage

Our approach so far

- No gold data (only 5k projected data!)
- No sharing between languages during learning

NER for low-resource Danish: Cross-Lingual Transfer, Target language annotation, or both?^{*}

Neural Cross-Lingual Transfer and Limited Annotated Data for Named Entity Recognition in Danish

Barbara Plank

Department of Computer Science ITU, IT University of Copenhagen Denmark bplank@itu.dk

to appear in NoDaLiDa 2019

* slide title inspired by Alisa Meechan-Maddon & Joakim Nivre's SyntaxFest presentation :-)

Motivation

- RQ1: To what extent can we transfer a NER tagger to Danish from existing English resources?
- RQ2: How does cross-lingual model transfer compare to annotating small amounts of gold data? And how to best combine them?
- RQ3: How accurate are existing NER systems on Danish?

Annotation with a Limited Budget

- Data: We annotated a subset of the Danish Universal Dependencies (UD) data for NERs
 - Dev set & Test set (both around 10k tokens, ~560 sentences)
 - Two training data set sizes: Tiny (272 sentences) and Small (604 sentences)
- Note: Lower density of NER, ~35% of the sentences contain NEs (vs 80% on the CoNLL'03 English NER data)

Cross-Lingual Transfer Scenarios

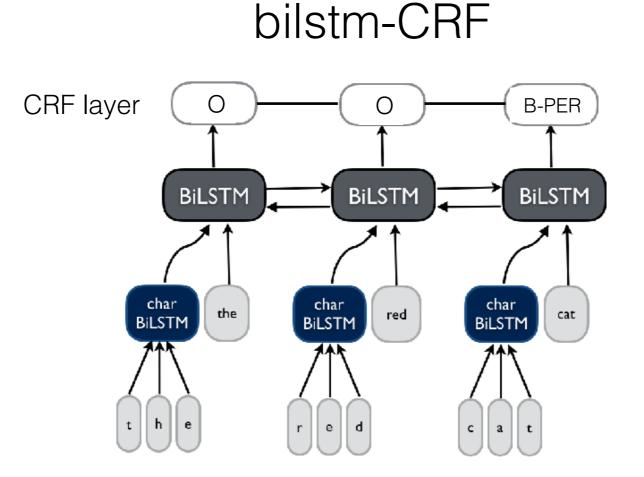
- Zero-shot: Direct model transfer CoNLL03->Danish via bilingual embeddings
- Few-shot direct transfer (DataAug): train on concatenation English & Danish (tiny|small)
- Few-shot fine-tuning: train first on English, then finetune on Danish
- In-language baseline (train on tiny | small Danish data)

Data Setups: Data & DataAugment

	#sentences	English Source (CoNLL 03) Medium Large (all)		
	(no target)	~3k	~14k	
Danish	Tiny	272+ ~3k	272+ ~14k	
(UD train subset)	Small	604+ ~3k	604+ ~14k	

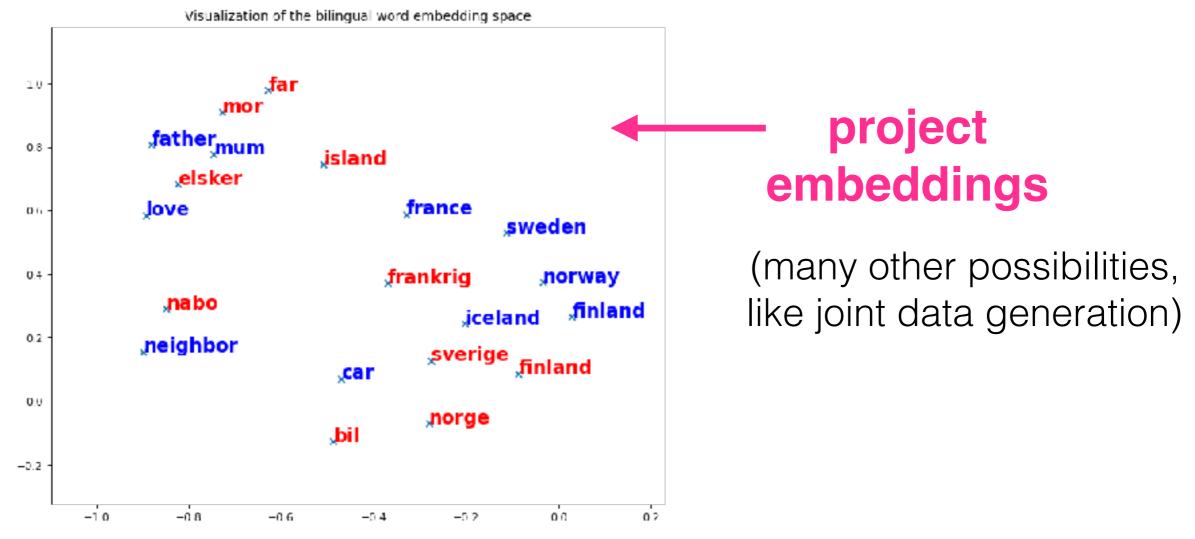
Model and Approach

 Similar to Ma and Hovy (2016) but with a characterlevel bilstm



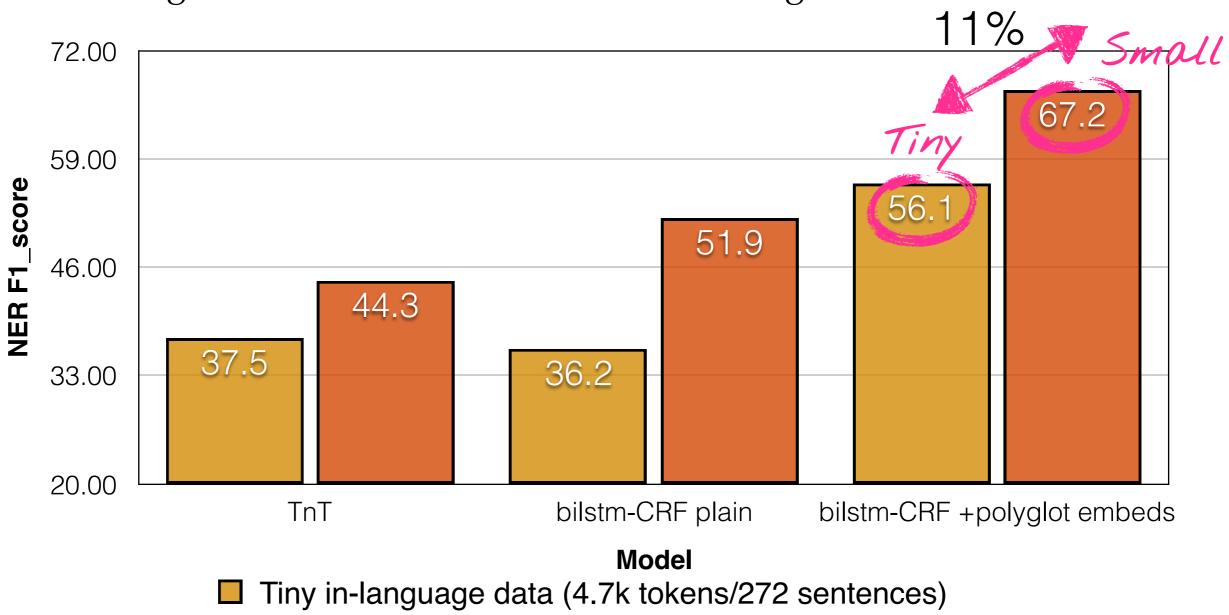
Bilingual embeddings

- Monolingual English and Danish Polyglot embeddings
- Align with Procrustes rotation method introduced in MUSE (Conneau et al., 2017; Artetxe et al., 2017)



Results: Baselines

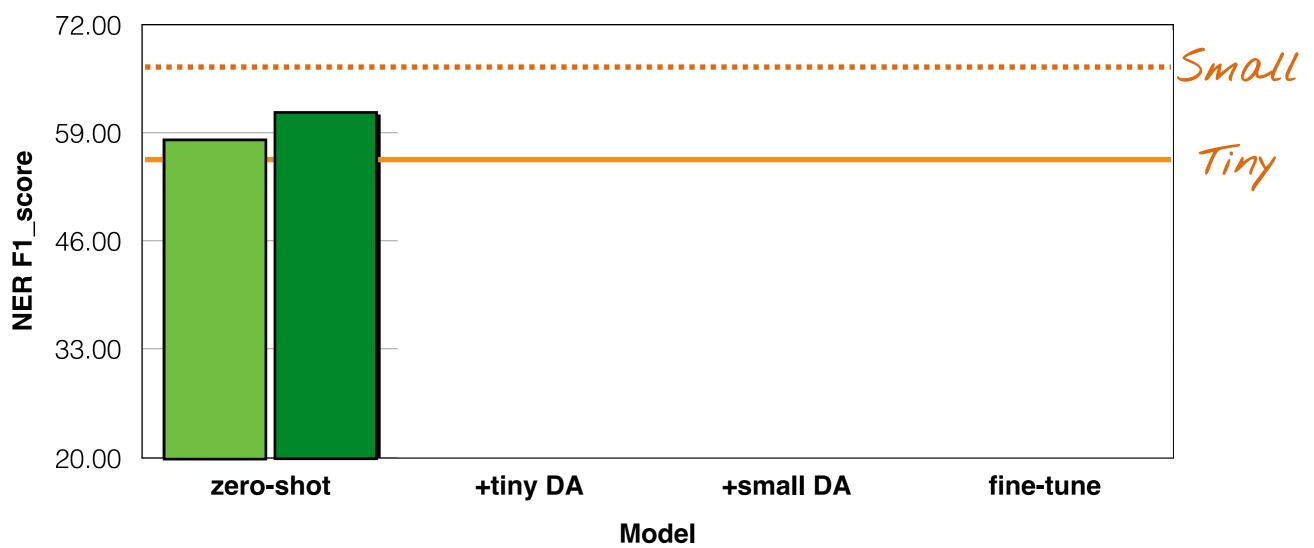
Training on small amounts of annotated target Danish data



Small in-language data (10k tokens/604 sentences)

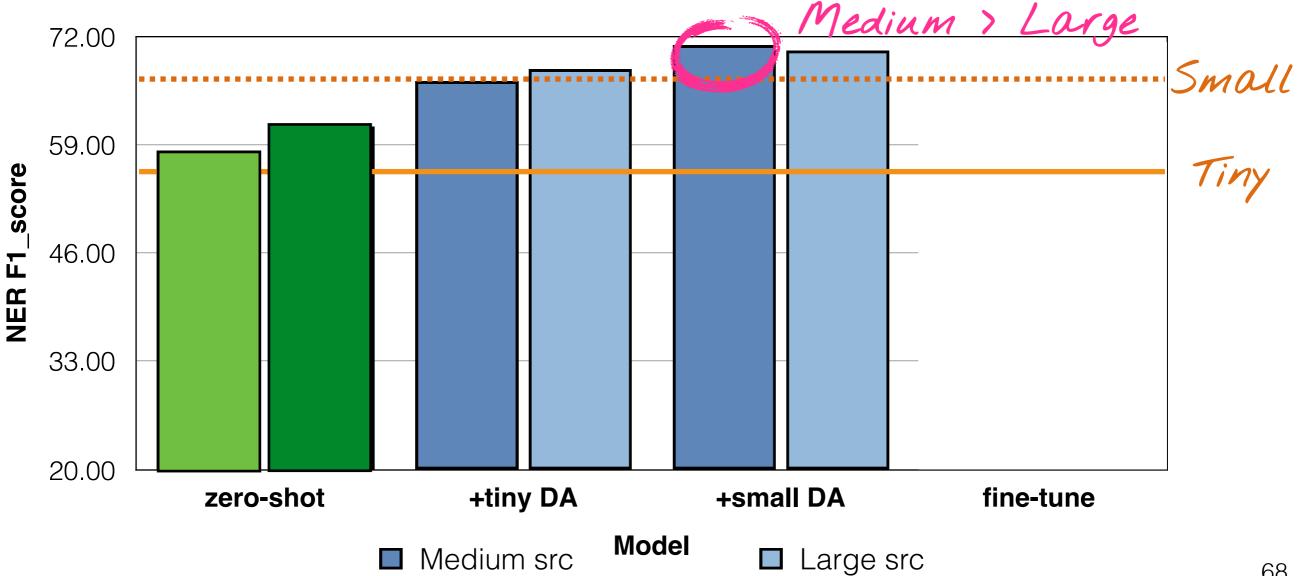
Results: Cross-lingual transfer

• **RQ1**: To what extent can we directly transfer a NER tagger from English to Danish (**zero-shot learning**)?



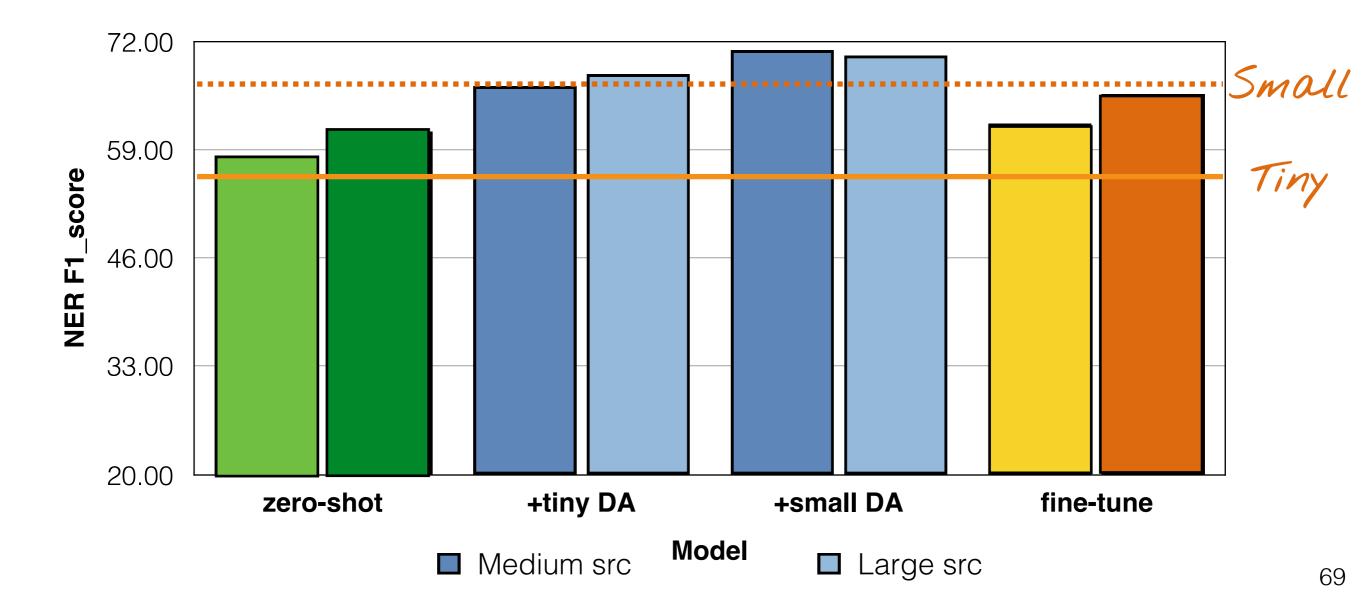
Results: Cross-lingual transfer

RQ2: How does transfer compare to small amounts of annotated labeled data (few-shot learning)?



Results: Cross-lingual transfer

• **RQ2**: Worse results with fine-tuning.



Results: Comparison

- **RQ3**: How good are existing systems for Danish?
- Best system identified: Polyglot NER (Al-Rfou et al., 2015) build on automatically-derived data from Wikipedia & Freebase

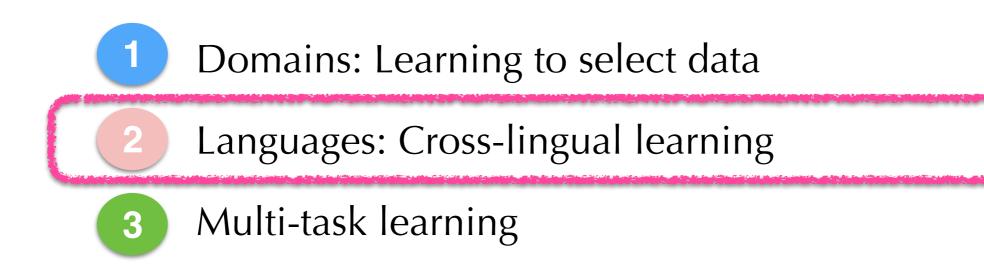
Test	All	PER	LOC	ORG	MISC
Polyglot	61.6	78.4	69.7	24.7	
Bilstm	66.0	86.6	63.6	42.5	24.8

Table 4: F₁ score for Danish NER.

Take-aways

- The most beneficial way is DataAug: add the target data to the source; fine-tuning was inferior
- Less source (EN) data is better: best transfer from the Medium setup (rather than the entire CoNLL data)
- Very little target data paired with dense cross-lingual embeddings yields an effective NER tagger for Danish quickly.

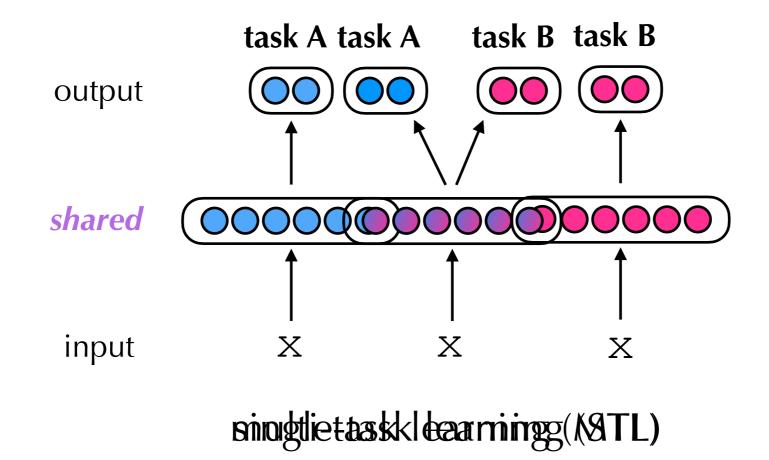
Roadmap



Cross-Lingual word representations: MTL sharing at the lowermost level

Multi-task Learning (MTL): Key Idea

"learning tasks in parallel while using a shared representation; what is learned for each task can help other tasks be learned better" (Caruana, 1997)



MTL as distant supervision for low-resource tagging (Feng & Cohn, 2017, EACL)

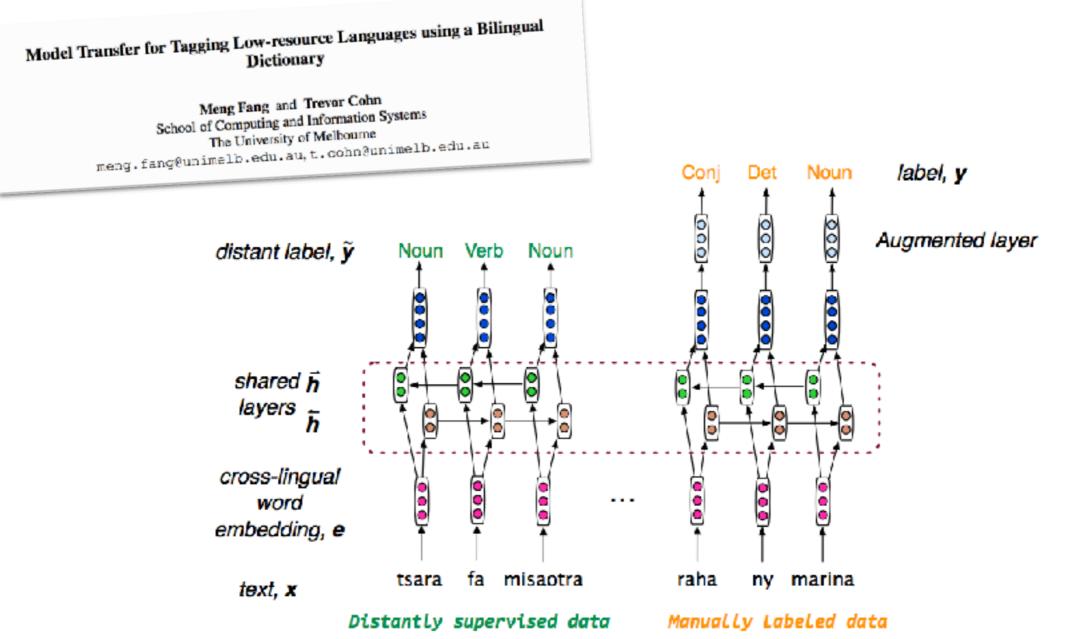
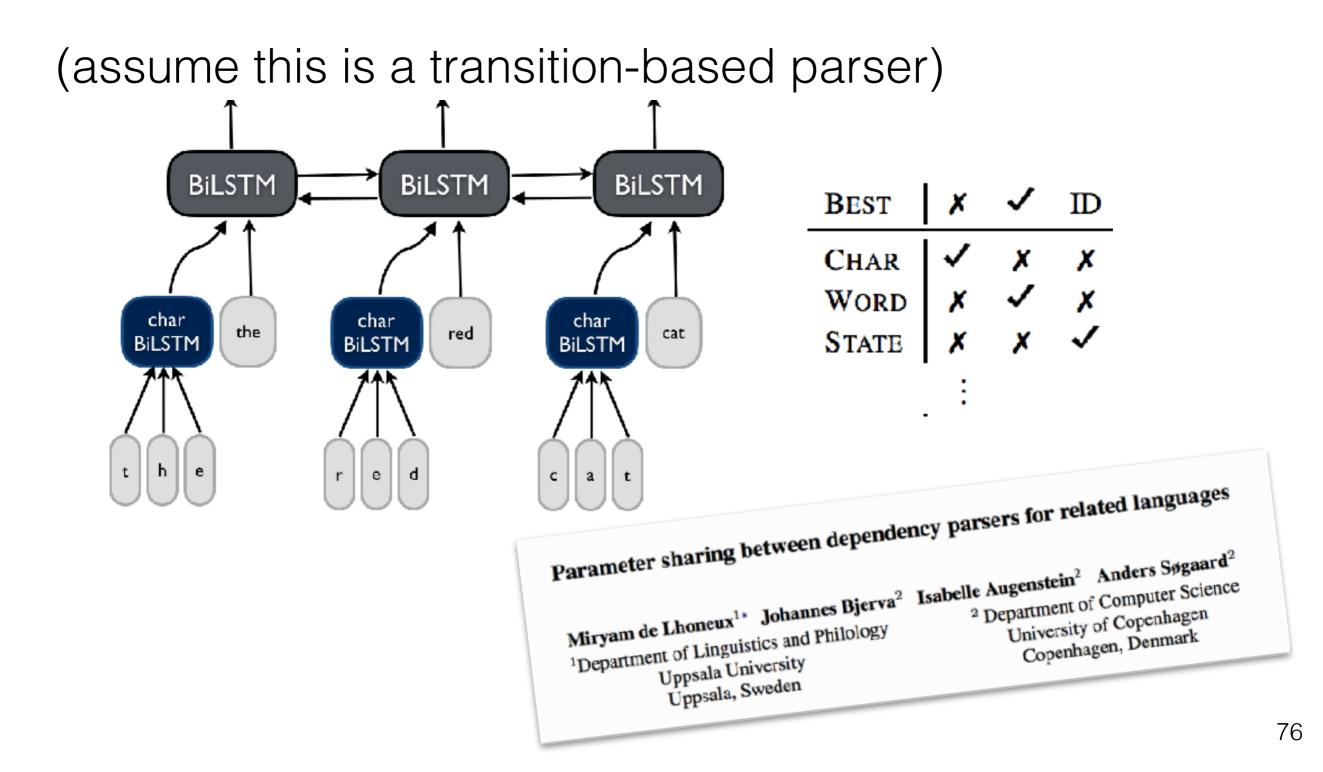


Figure 1: Illustration of the architecture of the joint model, which performs joint inference over both distant supervision (left) and manually labelled data (right).

What to share in dependency parsing?

(de Lhoneux et al., 2018, EMNLP)



.. the power of contextualized word embeddings & MTL

75 language, one parser: UDify

75 Languages, 1 Model: Parsing Universal Dependencies Universally

Daniel Kondratyuk Charles University Institute of Formal and Applied Linguistics Saarland University Department of Computational Linguistics dankondratyuk@gmail.com

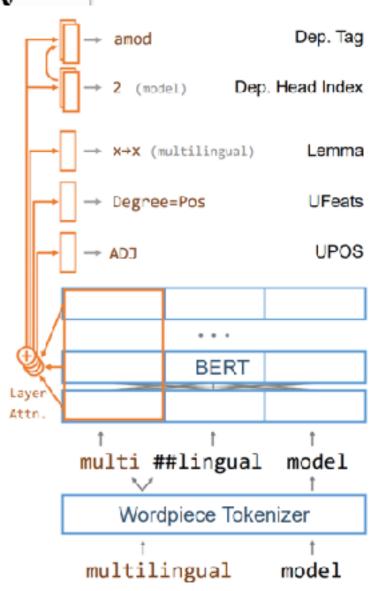


Figure 2: An illustration of the UDify network architecture with task-specific layer attention, inputting word tokens and outputting UD annotations for each token.

79

UDify: Let's look at their results

TREEBANK		MODEL	UPOS	UFEATS	Lemmas	UAS	LAS	CLAS	MLAS	BLEX
Afrikaans AfriBooms a	f_afribooms	UDPipe UDify	98.25 97.48	97.66 96.63	97.46 95.23	89.38 86.97	86.58 83.48	81.44 77.42	77.66 70.57	77.82 70.93
Akkadian PISANDUB al	kk_pisandub	UDify	19.92	99.51	2.32	27.65	4.54	3.27	1.04	0.30
Amharic ATT	am_att	UDify	15.25	43.95	58.04	17.38	3.49	4.88	0.23	2.53
Ancient Greek PROIEL	grc_proiel	UDPipe UDify	97.86 91.20	92.44 82.29	93.51 76.16	85.93 78.91	82.11 72.66	77.70 66.07	67.16 50.79	71.22 47.27
Ancient Greek Perseus	grc_perseus	UDPipe UDify	93.27 85.67	91.39 81.67	85.02 70.51	78.85 70.51	73.54 62.64	67.60 55.60	53.87 39.15	53.19 35.05
Arabic PADT	ar_padt	UDPipe UDify	96.83 96.58	94.11 91.77	95.28 73.55	87.54 87.72	82.94 82.88	79.77 79.47	73.92 70.52	75.87 50.26
Arabic PUD	ar_pud	UDify	79.98	40.32	0.00	76.17	67.07	65.10	10.67	0.00
Armenian ArmTDP	hy_armtdp	UDPipe UDify	93.49 94.42	82.85 76.90	92.86 85.63	78.62 85.63	71.27 78.61	65.77 73.72	48.11 46.80	60.11 59.14
Bambara CRB	bm_crb	UDify	30.86	57.96	20.42	30.28	8.60	6.56	1.04	0.76
Basque BDT	eu_bdt	UDPipe UDify	96.11 95.45	92.48 86.80	96.29 90.53	86.11 84.94	82.86 80.97	81.79 79.52	72.33 63.60	78.54 71.56
Belarusian HSE	be_hse	UDPipe UDify	93.63 97.54	73.30 89.36	87.34 85.46	78.58 91.82	72.72 87.19	69.14 85.05	46.20 71.54	58.28 68.66
Breton KEB	br_keb	UDify	62.78	47.12	51.31	63.52	39.84	35.14	4.64	16.34
Bulgarian BTB	bg_btb	UDPipe UDify	98.98 98.89	97.82 96.18	97.94 93.49	93.38 95.54	90.35 92.40	87.01 89.59	83.63 83.43	84.42 80.44
Buryat BDT	bxr_bdt	UDPipe UDify	40.34 61.73	32.40 47.45	58.17 61.03	32.60 48.43	18.83 26.28	12.36 20.61	1.26 5.51	6.49 11.68
Cantonese HK	vue_hk	UDify	67.11	91.01	96.01	46.82	32.01	33.35	14.29	31.26

UDify zero-shot results

TREEBANK		UPOS	Feats	Lem	UAS	LAS
Breton KEB	br_keb	63.67	46.75	53.15	63.97	40.19
Tagalog TRG	tl₋trg	61.64	35.27	75.00	64.73	39.38
Faroese OFT	fo_oft	77.86	35.71	53.82	69.28	61.03
Naija NSC	pcm_nsc	56.59	52.75	97.52	47.13	33.43
Sanskrit UFAL	sa_ufal	40.21	18.45	37.60	41.73	19.80

Table 5: Test set results for zero-shot learning, i.e., no UD training annotations available. Languages that are pretrained with BERT are bolded.

Huh!

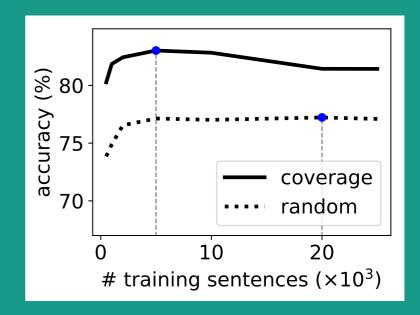
- Massively multi-lingual learning with contextualized embeddings and careful fine-tuning: big leaps forward
- Is MTL & Sequence Labeling with Attention all we need?
- More work needed (sharing what, data selection, pacing of learning)

To wrap up...

Take-away 1: Less is more

Data selection is beneficial in cross-lingual and cross-domain learning

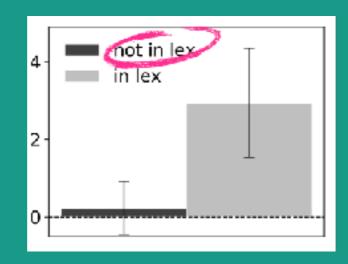
Cross-domain



Cross-lingual

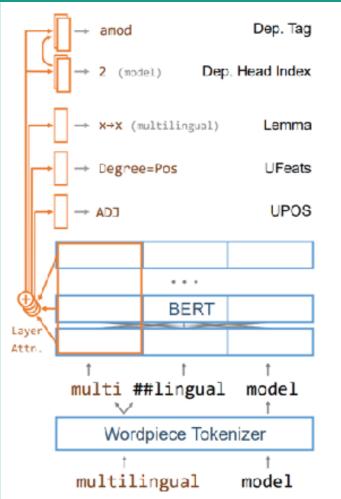
Take-away 2: Symbolic inductive bias

Neural models can benefit from inductive bias from **symbolic information**.



Take-away 3: MTL flexibility

Multi-task learning provides many opportunities (and challenges) and there is more to be discovered (especially in relation to multilingual modeling)



Transferring NLP models across languages and domains

Barbara Plank, ITU, Denmark

Questions? Thanks!

@barbara_plank
bplank.github.io
https://nlp.itu.dk/

Supported by:

