Nested Coordination in Universal Dependencies

Adam Przepiórkowski^{1,2,3} and Agnieszka Patejuk^{1,4}

¹Institute of Computer Science, Polish Academy of Sciences

²Institute of Philosophy, University of Warsaw

³Wolfson College, University of Oxford

⁴Centre for Linguistics and Philology, University of Oxford

Syntax Fest 2019 Paris, 30 August 2019

Problem - UD

PAN

- 1 Tom and Jerry and Scooby-Doo
- 2 [Tom and Jerry] and Scooby-Doo
- 3 Tom and [Jerry and Scooby-Doo]

(ternary) (binary) (binary)

Universal Dependencies (UD):

Problem - UD

PAN

- 1 Tom and Jerry and Scooby-Doo
- 2 [Tom and Jerry] and Scooby-Doo
- 3 Tom and [Jerry and Scooby-Doo]

(ternary) (binary)

(binary)

Universal Dependencies (UD):

1,2

3

Problem - MTT

PAN

- 1 Tom and Jerry and Scooby-Doo
- 2 [Tom and Jerry] and Scooby-Doo
- 3 Tom and [Jerry and Scooby-Doo]

Igor Mel'čuk's Meaning-Text Theory (MTT):

1,3

2

Solution – MTT

PAN

- 1 Tom and Jerry and Scooby-Doo
- 2 [Tom and Jerry] and Scooby-Doo
- 3 Tom and [Jerry and Scooby-Doo]

Groupings in MTT:

Solution - WG

Constituents in Dick Hudson's Word Grammar:

No problem for Prague

PAN

- 1 Tom and Jerry and Scooby-Doo
- 2 [Tom and Jerry] and Scooby-Doo
- 3 Tom and [Jerry and Scooby-Doo]

Prague-style:

No problem for Prague

- 1 Tom and Jerry and Scooby-Doo
- 2 [Tom and Jerry] and Scooby-Doo
- 3 Tom and [Jerry and Scooby-Doo]

Prague-style:

1

2

3

But Prague-style analysis is **theoretically problematic** and rejected by many linguists of different theoretical persuasions (Mel'čuk and Pertsov 1987: 65, Hudson 1988: 314–315, Gerdes and Kahane 2015: 102–105; also Borsley 2005).

Summary of the problem:

- UD does not distinguish between certain nestings of coordination,
- MTT and WG use mechanisms unavailable in UD (groupings, constituents),
- not a technical problem for Prague-style analysis of coordination,
- but such an analysis is rejected by many theoretical linguists.

But Prague-style analysis is **theoretically problematic** and rejected by many linguists of different theoretical persuasions (Mel'čuk and Pertsov 1987: 65, Hudson 1988: 314–315, Gerdes and Kahane 2015: 102–105; also Borsley 2005).

Summary of the problem:

- UD does not distinguish between certain nestings of coordination,
- MTT and WG use mechanisms unavailable in UD (groupings, constituents),
- not a technical problem for Prague-style analysis of coordination,
- but such an analysis is rejected by many theoretical linguists.

But Prague-style analysis is **theoretically problematic** and rejected by many linguists of different theoretical persuasions (Mel'čuk and Pertsov 1987: 65, Hudson 1988: 314–315, Gerdes and Kahane 2015: 102–105; also Borsley 2005).

Summary of the problem:

- UD does not distinguish between certain nestings of coordination.
- MTT and WG use mechanisms unavailable in UD (groupings, constituents),
- not a technical problem for Prague-style analysis of coordination,
- but such an analysis is rejected by many theoretical linguists.

But Prague-style analysis is **theoretically problematic** and rejected by many linguists of different theoretical persuasions (Mel'čuk and Pertsov 1987: 65, Hudson 1988: 314–315, Gerdes and Kahane 2015: 102–105; also Borsley 2005).

Summary of the problem:

- UD does not distinguish between certain nestings of coordination,
- MTT and WG use mechanisms unavailable in UD (groupings, constituents),
- not a technical problem for Prague-style analysis of coordination,
- but such an analysis is rejected by many theoretical linguists.

But Prague-style analysis is **theoretically problematic** and rejected by many linguists of different theoretical persuasions (Mel'čuk and Pertsov 1987: 65, Hudson 1988: 314–315, Gerdes and Kahane 2015: 102–105; also Borsley 2005).

Summary of the problem:

- UD does not distinguish between certain nestings of coordination,
- MTT and WG use mechanisms unavailable in UD (groupings, constituents),
- not a technical problem for Prague-style analysis of coordination,
- but such an analysis is rejected by many theoretical linguists.

But Prague-style analysis is **theoretically problematic** and rejected by many linguists of different theoretical persuasions (Mel'čuk and Pertsov 1987: 65, Hudson 1988: 314–315, Gerdes and Kahane 2015: 102–105; also Borsley 2005).

Summary of the problem:

- UD does not distinguish between certain nestings of coordination,
- MTT and WG use mechanisms unavailable in UD (groupings, constituents),
- not a technical problem for Prague-style analysis of coordination,
- but such an analysis is rejected by many theoretical linguists.

Enriching dependency labels via **subtyping**:

Enriching dependency labels via **subtyping**:

Similar solution considered in Mel'čuk 1988: 30 and Mel'čuk 2009: 93–94 and earlier. Rejected as 'highly unnatural' and leading to the doubling of dependency labels.

A problem for UD – **no theoretical limit** to the number of subtypes (Schuster *et al.* 2017: 130–131):

Similar solution considered in Mel'čuk 1988: 30 and Mel'čuk 2009: 93–94 and earlier. **Rejected** as 'highly unnatural' and leading to the doubling of dependency labels.

A problem for UD — **no theoretical limit** to the number of subtypes (Schuster *et al.* 2017: 130–131):

Similar solution considered in Mel'čuk 1988: 30 and Mel'čuk 2009: 93–94 and earlier. **Rejected** as 'highly unnatural' and leading to the doubling of dependency labels.

A problem for UD – **no theoretical limit** to the number of subtypes (Schuster *et al.* 2017: 130–131):

Similar solution considered in Mel'čuk 1988: 30 and Mel'čuk 2009: 93–94 and earlier. **Rejected** as 'highly unnatural' and leading to the doubling of dependency labels.

A problem for UD – **no theoretical limit** to the number of subtypes (Schuster *et al.* 2017: 130–131):

Retain basic tree representation, add different enhanced representation:

Tom and Jerry and Spike and Scooby-Doo:

no nesting)

Idea: pairs of dependencies (in both directions) between neighbouring conjuncts.

PAN

Retain basic tree representation, add different enhanced representation:

Tom and Jerry and Spike and Scooby-Doo:

(no nesting)

Idea: pairs of dependencies (in both directions) between neighbouring conjuncts.

PAN

Retain basic tree representation, add **different enhanced representation**:

Tom and Jerry and Spike and Scooby-Doo:

(no nesting)

Idea: pairs of dependencies (in both directions) between neighbouring conjuncts.

• [Tom and Jerry] and Spike and Scooby-Doo:

2 | | | | | | |

• [Tom and Jerry] and Spike and Scooby-Doo:

Pros:

Pros:

- it can be shown that representations of different nestings differ

Pros:

- it can be shown that representations of different nestings differ
- enhanced graph implements the common idea that conjuncts are co-heads
 - in dependency approaches: Tesnière 1959 (similar sentiments expressed by Hudson)
 - in constituency approaches: Gazdar et al. 1985 (similar sentiments in some HPSG work)
 - in combined approaches: Kahane 1997, Kahane and Mazziotta 2015

Pros:

- it can be shown that representations of different nestings differ
- enhanced graph implements the common idea that conjuncts are co-heads
 - in dependency approaches: Tesnière 1959 (similar sentiments expressed by Hudson)
 - in constituency approaches: Gazdar et al. 1985 (similar sentiments in some HPSG work)
 - in combined approaches: Kahane 1997, Kahane and Mazziotta 2015

Pros:

- it can be shown that representations of different nestings differ
- enhanced graph implements the common idea that conjuncts are co-heads
 - in dependency approaches: Tesnière 1959 (similar sentiments expressed by Hudson)
 - in constituency approaches: Gazdar et al. 1985 (similar sentiments in some HPSG work)
 - in combined approaches: Kahane 1997, Kahane and Mazziotta 2015

- basic trees and enhanced graphs must be inspected together to reveal full structure

Pros:

- it can be shown that representations of different nestings differ
- enhanced graph implements the common idea that conjuncts are co-heads
 - in dependency approaches: Tesnière 1959 (similar sentiments expressed by Hudson)
 - in constituency approaches: Gazdar *et al.* 1985 (similar sentiments in some HPSG work)
 - in combined approaches: Kahane 1997, Kahane and Mazziotta 2015

- basic trees and enhanced graphs must be inspected together to reveal full structure
- although this may be rectified by copying basic tree to enhanced graphs (and modifying labels accordingly)

Recall standard UD treatment of coordination:

• I like funny cats and mice.

In enhanced representation:

- distribute dependencies to coordinate structure (cf. obj above),
- distribute dependencies from coordinate structure (cf. amod above).

Recall standard UD treatment of coordination:

• I like funny cats and mice.

In enhanced representation:

- distribute dependencies to coordinate structure (cf. obj above),
- distribute dependencies from coordinate structure (cf. amod above)

Recall standard UD treatment of coordination:

• I like funny cats and mice.

In enhanced representation:

- distribute dependencies to coordinate structure (cf. obj above),
- distribute dependencies from coordinate structure (cf. amod above).

.....PAN

• [Tom and Jerry] and Scooby-Doo:

Tom and [Jerry and Scooby-Doo]:

Pros:

maximally conservative solution

- requires inspecting both levels (basic trees and enhanced graphs)
- this time, this can't be rectified so easily
- (does not encode the coheads idea)

• [Tom and Jerry] and Scooby-Doo:

• Tom and [Jerry and Scooby-Doo]:

Pros:

maximally conservative solution

- requires inspecting both levels (basic trees and enhanced graphs)
- this time, this can't be rectified so easily
- (does not encode the coheads idea)

.....PAN

• [Tom and Jerry] and Scooby-Doo:

• Tom and [Jerry and Scooby-Doo]:

Pros:

maximally conservative solution

- requires inspecting both levels (basic trees and enhanced graphs)
- this time, this can't be rectified so easily
- (does not encode the coheads idea)

···········

• [Tom and Jerry] and Scooby-Doo:

• Tom and [Jerry and Scooby-Doo]:

Pros:

maximally conservative solution

- requires inspecting both levels (basic trees and enhanced graphs)
- this time, this can't be rectified so easily
- (does not encode the coheads idea)

···········

• [Tom and Jerry] and Scooby-Doo:

• Tom and [Jerry and Scooby-Doo]:

Pros:

maximally conservative solution

- requires inspecting both levels (basic trees and enhanced graphs)
- this time, this can't be rectified so easily
- (does not encode the coheads idea)

PAN

• [Tom and Jerry] and Scooby-Doo:

• Tom and [Jerry and Scooby-Doo]:

Pros:

maximally conservative solution

- requires inspecting both levels (basic trees and enhanced graphs)
- this time, this can't be rectified so easily
- (does not encode the coheads idea)

PAN

Better solution: only distribute dependencies from coordinate structures:

Tom and [[Jerry and Spike] and Scooby-Doo]

Pros

- different nestings distinguished in enhanced representations (alone)
- another argument for getting rid of the problematic aspect of UD approach to distribution in coordinate structures (two outgoing obl dependencies – two dependents or one?)

Better solution: only distribute dependencies from coordinate structures:

Tom and [[Jerry and Spike] and Scooby-Doo]:

Pros

- different nestings distinguished in enhanced representations (alone)
- another argument for getting rid of the problematic aspect of UD approach to distribution in coordinate structures (two outgoing obl dependencies – two dependents or one?)

PAN

Better solution: only distribute dependencies **from** coordinate structures:

Tom and [[Jerry and Spike] and Scooby-Doo]:

Pros:

- different nestings distinguished in enhanced representations (alone)
- another argument for getting rid of the problematic aspect of UD approach to distribution in coordinate structures (two outgoing obl dependencies – two dependents or one?)

• Tom and [[Jerry and Spike] and Scooby-Doo]:

Pros:

- different nestings distinguished in enhanced representations (alone)
- another argument for getting rid of the problematic aspect of UD approach to distribution in coordinate structures (two outgoing obl dependencies – two dependents or one?)

Solutions – summary

Solution	Pros	Cons			
subtypes	works at the level of basic trees	indefinite number of labels'highly unnatural' (Mel'čuk)			
co-heads	conjuncts as co-headsmay be made to work at the enhanced level	basic version requires inspecting both levels			
distribution	 works at the level of enhanced graphs relatively conservative argument for getting rid of distribution to coordination 	• (does not encode co- heads)			

Solutions – summary

Solution	Pros	Cons			
subtypes	works at the level of basic trees	indefinite number of labels'highly unnatural' (Mel'čuk)			
co-heads	conjuncts as co-headsmay be made to work at the enhanced level	 basic version requires inspecting both levels 			
distribution	 works at the level of enhanced graphs relatively conservative argument for getting rid of distribution to coordination 	(does not encode co- heads) Thank you for your attention!			

Fun fact

Fun fact

conjuncts	2	3	4	5	 10	
nestings	1	3	11	45	 103,049	

Fun fact

Fun fact: how many nestings for *n* conjuncts?

• **little Schröder numbers** (Schröder–Hipparchus numbers, super–Catalan numbers)

Fun fact Reference

Fun fact

- **little Schröder numbers** (Schröder–Hipparchus numbers, super–Catalan numbers)
- sequence A001003 in the On-line Encyclopedia of Integer Sequences

Fun fact Reference

Fun fact

- little Schröder numbers (Schröder–Hipparchus numbers, super-Catalan numbers)
- sequence A001003 in the On-line Encyclopedia of Integer Sequences
- the value for 10 calculated already by Hipparchus of Nicaea, c. 190 c. 120 BC

Fun fact Referenc

Fun fact

- little Schröder numbers (Schröder-Hipparchus numbers, super-Catalan numbers)
- sequence A001003 in the On-line Encyclopedia of Integer Sequences
- the value for 10 calculated already by Hipparchus of Nicaea, c. 190 –
 c. 120 BC
- see Stanley 1997 for the history of these numbers, and their other interpretations

- Borsley, R. D. (2005). Against ConjP. Lingua, 115(4), 461-482.
- Gazdar, G., Klein, E., Pullum, G. K., and Sag, I. A. (1985). *Generalized Phrase Structure Grammar*. Blackwell / Harvard University Press.
- Gerdes, K. and Kahane, S. (2015). Non-constituent coordination and other coordinative constructions as dependency graphs. In E. Hajičová and J. Nivre, eds., *Proceedings of the Third International Conference on Dependency Linguistics (DepLing 2015)*, pp. 101–110.
- Hudson, R. (1988). Coordination and grammatical relations. *Journal of Linguistics*, 24(2), 303–342.
- Kahane, S. (1997). Bubble trees and syntactic representations. In T. Becker and H.-U. Krieger, eds., *Proceedings of Mathematics of Language 5*, pp. 70–76.
- Kahane, S. and Mazziotta, N. (2015). Syntactic polygraphs: A formalism extending both constituency and dependency. In M. Kuhlmann, M. Kanazawa, and G. M. Kobele, eds., *Proceedings of Mathematics of Language 14*, pp. 152–164.
- Mel'čuk, I. (1988). Dependency Syntax: Theory and Practice. The SUNY Press.
- Mel'čuk, I. (2009). Dependency in natural language. In A. Polguère and I. Mel'čuk, eds., Dependency in Linguistic Description, pp. 1–110. John Benjamins.
- Mel'čuk, I. and Pertsov, N. (1987). Surface Syntax of English. A Formal Model within the Meaning—Text Framework. John Benjamins.
- Popel, M., Mareček, D., Štěpánek, J., Zeman, D., and Žabokrtský, Z. (2013). Coordination structures in dependency treebanks. In *Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 517–527.

- Schuster, S., Lamm, M., and Manning, C. D. (2017). Gapping constructions in Universal Dependencies v2. In M.-C. de Marneffe, J. Nivre, and S. Schuster, eds., *Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW 2017)*, pp. 123–132. Association for Computational Linguistics.
- Stanley, R. P. (1997). Hipparchus, Plutarch, Schröder, and Hough. *The American Mathematical Monthly*, **104**(4), 344–350.
- Tesnière, L. (1959). Éléments de Syntaxe Structurale. Klincksieck.