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• Efficiency Hypothesis: Languages are optimized 
so that messages we want to express are easy to 
produce and comprehend accurately.  
(Zipf, 1949; Hockett, 1960; Slobin, 1973; Givón, 1991, 1992; Hawkins, 1994, 2004, 
2014; Christiansen & Chater, 2008; Jaeger & Tily, 2011; Fedzechkina et al., 2012; 
MacDonald, 2013)

• Mathematical formalization: human languages 
are solutions to a constrained optimization 
problem describing communication subject to 
cognitive constraints.  
• So, what is the objective function that human 

languages optimize?
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• For example, Ferrer i Cancho & Solé (2003) propose that, for a 
source random variable M, natural languages L are minima of: 
 
 
 
 
 
 
 

• This function is also known as the Deterministic Information 
Bottleneck (Strouse & Schwab, 2016) and the Infomax 
Criterion (Bell & Sejnowski, 1995; Friston, 2010).

• Key part: effort is quantified using entropy (average 
surprisal).

JM(L) = H[M |L] + λH[L]

Ambiguity of meaning of the signal. 
(Conditional entropy of meaning given signal)

Effort of using the signal  
(Entropy of the signal)
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• Surprisal theory (Hale, 2001; Levy, 2008; Smith 
& Levy, 2013; Hale, 2016): 

• Processing difficulty at a word is equal to 
the surprisal of that word in context:

• Difficulty(w | context) = -logP(w | context)
• Accounts for:

• Garden path effects (Hale, 2001)
• Antilocality effects (Konieczny, 2000; 

Levy, 2008)
• Syntactic construction frequency 

effects (Levy, 2008)
• In other words, the average processing 

difficulty in a language is proportional to 
the entropy of the language H[L].

Smith & Levy (2013). The effect of word 
predictability on reading time is 
logarithmic. Cognition. 
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• Lossy-context surprisal: Diff(w | context) = -logP(w | memory representation)
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• So the average processing difficulty for a language is a 
cross entropy:

Diff(L) ∝ 𝔼
w1,…,i

[−log p(wi |mi)]

≡ HL[L′�]

where mi is a lossy compression of the context w1,…,i-1,  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Marzen & Crutchfield, 2017).



 13

Information Locality

objective context

outBob threw the old trash sitting in the kitchen

memory representation



 13

Information Locality

objective context

outBob threw the old trash sitting in the kitchen

memory representation



• If information about words is lost at a constant rate (noisy memory), then the 
memory representation will have less information about words that have been 
in memory longer.

 13

Information Locality

objective context

outBob threw the old trash sitting in the kitchen

memory representation



• If information about words is lost at a constant rate (noisy memory), then the 
memory representation will have less information about words that have been 
in memory longer.

• This leads to information locality. Difficulty increases when words with high 
mutual information are distant.

 13

Information Locality

objective context

outBob threw the old trash sitting in the kitchen

memory representation



• If information about words is lost at a constant rate (noisy memory), then the 
memory representation will have less information about words that have been 
in memory longer.

• This leads to information locality. Difficulty increases when words with high 
mutual information are distant.

• Theorem (Futrell & Levy, 2017):

 13

Information Locality

objective context

outBob threw the old trash sitting in the kitchen

memory representation



• If information about words is lost at a constant rate (noisy memory), then the 
memory representation will have less information about words that have been 
in memory longer.

• This leads to information locality. Difficulty increases when words with high 
mutual information are distant.

• Theorem (Futrell & Levy, 2017):

 13

Information Locality

objective context

outBob threw the old trash sitting in the kitchen

memory representation

C(wi|w1, ..., wi−1) ≈ − logP (w)−
i−1∑

j=1

ei−jpmi(wi;wj)Diff



• If information about words is lost at a constant rate (noisy memory), then the 
memory representation will have less information about words that have been 
in memory longer.

• This leads to information locality. Difficulty increases when words with high 
mutual information are distant.

• Theorem (Futrell & Levy, 2017):

 13

Information Locality

objective context

outBob threw the old trash sitting in the kitchen

memory representation

C(wi|w1, ..., wi−1) ≈ − logP (w)−
i−1∑

j=1

ei−jpmi(wi;wj)Diff



• If information about words is lost at a constant rate (noisy memory), then the 
memory representation will have less information about words that have been 
in memory longer.

• This leads to information locality. Difficulty increases when words with high 
mutual information are distant.

• Theorem (Futrell & Levy, 2017):

 13

Pointwise mutual information (pmi) is the most 
general statistical measure of how strongly two 
values predict each other (Church & Hanks, 1990)

	 	 	 	 pmi(w; w’) = log p(w|w’) 

                  	 	 	 	              p(w)

Information Locality

objective context

outBob threw the old trash sitting in the kitchen

memory representation

C(wi|w1, ..., wi−1) ≈ − logP (w)−
i−1∑

j=1

ei−jpmi(wi;wj)Diff



• If information about words is lost at a constant rate (noisy memory), then the 
memory representation will have less information about words that have been 
in memory longer.

• This leads to information locality. Difficulty increases when words with high 
mutual information are distant.

• Theorem (Futrell & Levy, 2017):

 13

Information Locality

objective context

outBob threw the old trash sitting in the kitchen

memory representation

C(wi|w1, ..., wi−1) ≈ − logP (w)−
i−1∑

j=1

ei−jpmi(wi;wj)Diff



• If information about words is lost at a constant rate (noisy memory), then the 
memory representation will have less information about words that have been 
in memory longer.

• This leads to information locality. Difficulty increases when words with high 
mutual information are distant.

• Theorem (Futrell & Levy, 2017):

 13

Information Locality

objective context

outBob threw the old trash sitting in the kitchen

memory representation

C(wi|w1, ..., wi−1) ≈ − logP (w)−
i−1∑

j=1

ei−jpmi(wi;wj)Diff



• If information about words is lost at a constant rate (noisy memory), then the 
memory representation will have less information about words that have been 
in memory longer.

• This leads to information locality. Difficulty increases when words with high 
mutual information are distant.

• Theorem (Futrell & Levy, 2017):

 13

Information Locality

objective context

outBob threw the old trash sitting in the kitchen

memory representation

C(wi|w1, ..., wi−1) ≈ − logP (w)−
i−1∑

j=1

ei−jpmi(wi;wj)Diff



• If information about words is lost at a constant rate (noisy memory), then the 
memory representation will have less information about words that have been 
in memory longer.

• This leads to information locality. Difficulty increases when words with high 
mutual information are distant.

• Theorem (Futrell & Levy, 2017):

 13

ed
: Proportion of information retained about the d'th most recent word 
(Under the noisy memory model, this must decrease monotonically.)

Information Locality

objective context

outBob threw the old trash sitting in the kitchen

memory representation

C(wi|w1, ..., wi−1) ≈ − logP (w)−
i−1∑

j=1

ei−jpmi(wi;wj)Diff



• If information about words is lost at a constant rate (noisy memory), then the 
memory representation will have less information about words that have been 
in memory longer.

• This leads to information locality. Difficulty increases when words with high 
mutual information are distant.

• Theorem (Futrell & Levy, 2017):

 13

ed
: Proportion of information retained about the d'th most recent word 
(Under the noisy memory model, this must decrease monotonically.)

Information Locality

objective context

outBob threw the old trash sitting in the kitchen

memory representation

C(wi|w1, ..., wi−1) ≈ − logP (w)−
i−1∑

j=1

ei−jpmi(wi;wj)Diff



Information Locality

 14



Information Locality
• Information locality: I predict processing difficulty when words that predict each 

other (have high mutual information) are far apart.

 14



Information Locality
• Information locality: I predict processing difficulty when words that predict each 

other (have high mutual information) are far apart.
• How does this relate to dependency locality?

 14



Information Locality
• Information locality: I predict processing difficulty when words that predict each 

other (have high mutual information) are far apart.
• How does this relate to dependency locality?
• Linking Hypothesis: Words in syntactic dependencies have high mutual 

information (de Paiva Alves, 1996; Yuret, 1998)

 14



Information Locality
• Information locality: I predict processing difficulty when words that predict each 

other (have high mutual information) are far apart.
• How does this relate to dependency locality?
• Linking Hypothesis: Words in syntactic dependencies have high mutual 

information (de Paiva Alves, 1996; Yuret, 1998)
• Makes sense a priori: Mutual information is a measure of strength of 

covariance.

 14



Information Locality
• Information locality: I predict processing difficulty when words that predict each 

other (have high mutual information) are far apart.
• How does this relate to dependency locality?
• Linking Hypothesis: Words in syntactic dependencies have high mutual 

information (de Paiva Alves, 1996; Yuret, 1998)
• Makes sense a priori: Mutual information is a measure of strength of 

covariance.
• If this is true, then we can see dependency locality effects as a subset of 

information locality effects.

 14



Information Locality
• Information locality: I predict processing difficulty when words that predict each 

other (have high mutual information) are far apart.
• How does this relate to dependency locality?
• Linking Hypothesis: Words in syntactic dependencies have high mutual 

information (de Paiva Alves, 1996; Yuret, 1998)
• Makes sense a priori: Mutual information is a measure of strength of 

covariance.
• If this is true, then we can see dependency locality effects as a subset of 

information locality effects.
• I have a talk about this tomorrow! (Futrell, Qian, Gibson, Fedorenko & Blank, 2019).

 14



Information Locality
• Information locality: I predict processing difficulty when words that predict each 

other (have high mutual information) are far apart.
• How does this relate to dependency locality?
• Linking Hypothesis: Words in syntactic dependencies have high mutual 

information (de Paiva Alves, 1996; Yuret, 1998)
• Makes sense a priori: Mutual information is a measure of strength of 

covariance.
• If this is true, then we can see dependency locality effects as a subset of 

information locality effects.
• I have a talk about this tomorrow! (Futrell, Qian, Gibson, Fedorenko & Blank, 2019).

 14

Information locality

Dependency Locality

Words with high 
mutual information  
should be close

Words in 
dependencies  
should be close



Information Locality

• Introduction 
• Information Locality 
• Study 1: Strength of Dependencies 
• Study 2: Adjective Order 
• Conclusion

 15



Strength of Dependencies



Strength of Dependencies

• Dependency locality says: All words in dependencies should 
be close.



Strength of Dependencies

• Dependency locality says: All words in dependencies should 
be close.

• Information locality says: Words want to be close in 
proportion to their mutual information.



Strength of Dependencies

• Dependency locality says: All words in dependencies should 
be close.

• Information locality says: Words want to be close in 
proportion to their mutual information.

• Information locality prediction: Words in dependencies 
which predict each other other strongly will be especially 
attracted to each other, beyond dependency locality effects.



Strength of Dependencies

• Dependency locality says: All words in dependencies should 
be close.

• Information locality says: Words want to be close in 
proportion to their mutual information.

• Information locality prediction: Words in dependencies 
which predict each other other strongly will be especially 
attracted to each other, beyond dependency locality effects.



Strength of Dependencies



Strength of Dependencies

• So: Fit a regression predicting the distance between a head 
and dependent from the pmi of the head and dependent.



Strength of Dependencies

• So: Fit a regression predicting the distance between a head 
and dependent from the pmi of the head and dependent.



Strength of Dependencies

• So: Fit a regression predicting the distance between a head 
and dependent from the pmi of the head and dependent.

Distance between words  
in the r’th dependency in language I



Strength of Dependencies

• So: Fit a regression predicting the distance between a head 
and dependent from the pmi of the head and dependent.

Distance between words  
in the r’th dependency in language I Strength of pmi-attraction effect



Strength of Dependencies

• So: Fit a regression predicting the distance between a head 
and dependent from the pmi of the head and dependent.

• Fit to UD v2.1 corpora of 50 languages.

Distance between words  
in the r’th dependency in language I Strength of pmi-attraction effect



Strength of Dependencies

• So: Fit a regression predicting the distance between a head 
and dependent from the pmi of the head and dependent.

• Fit to UD v2.1 corpora of 50 languages.
• I measure pmi between POS tags, not wordforms, 

because wordform mutual information is hard to estimate 
for natural language (see my talk tomorrow)
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in the r’th dependency in language I Strength of pmi-attraction effect
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Are words in dependencies with high pmi closer?

• I find a significant pmi 
attraction effect in 48/50 
languages.

• Average effect size is -0.3:
• For each bit of pmi 

between two words, they 
are 0.3 words closer 
together on average.
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The pretty red Italian car 👍

The red pretty Italian car 👎

The Italian pretty red car 👎

The pretty Italian red car 👎

• There are constraints on relative order of adjectives that 
are stable across speakers and languages.

• Strongest empirical generalization: more subjective adjectives 
are farther out (Scontras et al., 2017)

• Information locality explanation: Adjectives with high pmi 
with a noun will appear relatively close to that noun.
• Possibly conceptually related to subjectivity.
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• 1. Gather a large set of adjective—adjective—noun triples 
from a corpus.

• 2. Measure pmi between adjectives and nouns.
• 3. Does pmi(A;N) predict that A will be closer to the noun than 

the other adjective?
• Data: Google Syntactic n-Grams (8.5 billion adjective-noun pairs)
• Model: Logistic regression predicting order from pmi.
• Result: PMI predicts adjective order for held-out data with 66.9% 

accuracy.
• Best previously known predictor (subjectivity) gets 68.4%
• PMI + Subjectivity gets 72.9% accuracy
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• Other theories aim to explain the same data… 
• Dyer’s (2017, 2018) Integration Cost: Involves the 

conditional entropy of dependency relation labels given 
words.

• Hahn et al.’s (2018) Subjective Rational Speech Acts 
Model: Involves noisy incremental memory in the 
computation of meaning.

• Scontras et al.’s (2019) Noisy composition model 
explains adjective order in terms of noisy hierarchical 
computation of meaning.

• Future work will have to rigorously disentangle the predictions 
of these theories.

• Problem: The relevant information-theoretic quantities are 
hard to estimate accurately.
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• Question. How does dependency locality fit in formally 
with information-theoretic models of natural language?

JM(L) = H[M |L] + λHL[L′�]

Dependency locality 
happens in this term 
in the form of 
information locality
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• All code is available online at  
http://github.com/langprocgroup/adjorder and  
http://github.com/langprocgroup/cliqs 

• Thanks to Roger Levy, Ted Gibson, and Tim O’Donnell for 
discussions. 

• Thanks to the SyntaxFest reviewers for helpful comments. 
• Thanks to the Quasy organizers for a great conference!

Thanks all!
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