Building a treebank for Occitan: what use for Romance UD corpora?

Aleksandra Miletic¹ Myriam Bras¹ Louise Esher¹ Jean Sibille¹ Marianne Vergez-Couret²

¹CLLE-ERSS UMR 5263, CNRS & University of Toulouse Jean Jaurès, France

²FoReLLIS (EA 3816), University of Poitiers, France

Universal Dependencies Workshop, 30 August 2019

1/19

2 Resources and tools

Oelexicalized parsing: experiments and results

Manual annotation analysis

Conclusions and future work

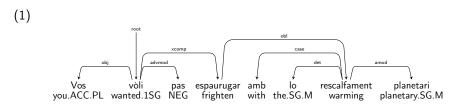
Goal

Initiate the building of the first dependency treebank for Occitan

- relatively low-resourced Romance language: no syntactically annotated data
- ullet ightarrow need to simplify and accelerate manual annotation
- Constraint: Less time-consuming than full manual annotation

Methodology

Direct delexicalized cross-lingual parsing using Romance UD treebanks


- Train a parser on these treebanks and use the models to parse Occitan
- Use best models to provide human annotators with an initial annotation

Focus

 $\mathsf{Effects}$ of cross-lingual annotation on the work of human annotators in terms of annotation speed and ease

Occitan

- Romance language
- South of France, some areas of Italy and Spain
- Pro-drop, free word order
- Relatively under-resourced:
 - morphological lexicon (850K entries): Vergez-Couret (2016)
 - POS-tagged corpus (15K tokens): Bernhard et al. (2018)
- Rich diatopic variation, no standard dialect

'I didn't want to scare you with global warming.'

イロト イポト イヨト イヨト

4/19

Direct delexicalized cross-lingual parsing

Parsing a low-resourced language with insufficent treebank data:

- Training a delexicalized model on a related language
 - training based typically on POS tags and morphosyntactic traits
 - tokens and lemmas (i.e., lexical information) are ignored
- Using the delexicalized model to parse the target language

Essential condition: harmonized annotations between the source and the target corpus (cf. McDonald et al., 2011, 2013) \rightarrow utility of the UD corpora Already used in similar experiments: Lynn et al. (2014) ; Tiedemann (2015) ; Duong et al. (2015)

Resources and tools

Oelexicalized parsing: experiments and results

Manual annotation analysis

Conclusions and future work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Training corpora

- Universal Dependency Treebanks v2.3
- Catalan, French, Galician, Italian, Old French, Portuguese, Romanian and Spanish
- 14/23 available corpora: selected for content compatibility (no spoken language, no tweets) and annotation quality (manual annotation or conversion from manual annotation)
- No morphosyntactic traits, only one-level syntactic labels used

Test sample

- 1152 tokens of newspaper texts (Languedocian and Gascon dialects)
- Gold-standard UD POS tags converted from an existing Occitan corpus based on the GRACE tagset (Miletic et al., 2019)
- Manual gold-standard syntactic annotation (one-level labels)

Parser

• Talismane NLP suite (Urieli, 2013) (SVM algorithm used here)

Provide the second s

Oblexicalized parsing: experiments and results

- Manual annotation analysis
- Conclusions and future work

 Three-step evaluation:

- Establishing the baseline: training models on each corpus and testing them on their designated test sample
- Intrinsic evaluation: testing all models from Step 1 on the manually annotated Occitan sample
- Extrinsic evaluation: parsing a new Occitan sample using the best performing models from Step 2
 - Manual annotation speed and ease evaluation
 - Recurrent error analysis based on annotator feedback

Step 1: Baseline evaluation

Corpus	Train size	Test size	LAS	UAS
ca ancora	418K	58K	77.82	82.20
es ancora	446K	52.8K	76.75	81.29
-	12.2K	13.5K	74.88	78.81
es_gsd	25K	2.7K	82.41	84.60
fr_partut				
fr_gsd	364K	10.3K	78.51	81.81
fr_sequoia	52K	10.3K	78.29	80.71
fr_ftb	470K	79.6K	68.93	73.08
gl treegal	16.7K	10.9K	73.91	78.79
it isdt	294K	11.1K	81.03	84.19
it partut	52.4K	3.9K	82.66	85.22
ofr srcmf	136K	17.3K	69.41	79.09
pt bosque	222K	10.9K	77.41	81.27
pt gsd	273K	33.6K	80.2	83.2
rorrt	185K	16.3K	71.87	78.92
ro_nonstandard	155K	20.9K	65.59	75.45
es_ancora+gsd	458.2K	66.3K	73.14	78.24
fr partut+gsd+sequoia	441K	23.3K	73.69	77.57
fr_partut+gsd+sequoia+ftb	911K	102.9K	74.87	78.55
it_isdt+partut	346.4K	15K	81.78	84.66
pt_bosque+gsd	495K	44.5K	76.09	81.47
ro_nonstand+rrt	340K	37.2K	67.21	76.06

LAS: 65.59 (ro_nonstandard) – 82.41 (fr_partut) UAS: 73.08 (fr_ftb) – 85.22 (it_partut)

Merging corpora didn't improve best individual result per language. Merging = annotation incoherence?

All models tested in Step 2

Step 2: Evaluation on the Occitan sample

Train corpus	LAS	UAS	Train corpus	LAS	UAS
it isdt	71.6	76.0	ca_ancora	68.6	75.2
it_isdt+partut	71.3	75.9	fr_sequoia	68.6	73.3
fr partut+gsd+sequoia	70.8	75.7	es_gsd	67.8	73.4
fr_gsd	70.4	75.9	fr_ftb	67.4	72.5
pt_bosque	70.0	75.3	ro_rrt	67.1	72.2
it_partut	69.7	74.1	ro_nonstand+rrt	66.6	72.0
fr_partut+gsd+sequoia+ftb	69.6	74.4	pt_bosque+gsd	66.4	74.3
fr_partut	69.4	74.6	pt_gsd	63.1	73.3
es_ancora+gsd	69.1	74.9	ro_nonstand	60.2	72.7
es_ancora	69.0	75.3	ofr_scmrf	59.2	66.0
gl_treegal	68.7	73.4			

Test: manually annotated Occitan sample (1000 tokens)

```
LAS: 59.2 (ofr_scmrf) - 71.6 (it_isdt)
```

```
UAS: 66.0 (ofr_scmrf) - 76.0 (it_isdt)
```

Top 5 models:

- 3 based on French and Portuguese (not close to Occitan)
- All based on large corpora (smallest: 222K tokens)
- Smallest loss compared to baseline: fr_partut+gsd+sequoia. Merging = robustness?

Step 3: Parsing new texts in Occitan

Which model is the most useful as a pre-annotation tool for human annotators?

Setup: parse test sample \rightarrow filter dependencies \rightarrow submit to human annotators \rightarrow measure annotation speed

Models: best model for each language among top 5 from Step 2:

 $it_isdt, \ fr_partut+gsd+sequoia, \ pt_bosque$

Test sample: 3×300 tokens of literary text with gold-standard POS

Dependency filter: parser's decision probability score >0.7

Results:

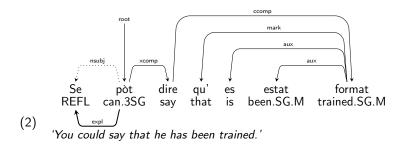
Sample	Model	Size	Coverage at	LAS	UAS	Man.
		(tokens)	prob. >0.7	(filter	ed deps)	time
viaule1	it_isdt	352	84.7 %	81.2	88.7	30'
viaule2	fr_partut+gsd+sequoia	325	86.5 %	74.8	85.2	32'
viaule3	pt_bosque	337	88.3 %	84.5	89.4	21'

• Comparable results for the three models

- $\bullet\,$ Mean annotation speed increase: 340 tok/h \rightarrow 730 tok/h
- Positive ergonomic effect reported by the annotator: preannotation (although partial) makes the task less daunting compared to dealing with a blank text

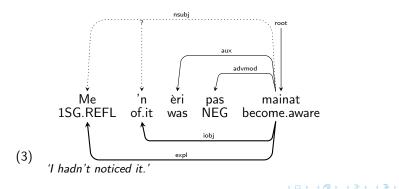
12/19

2 Resources and tools

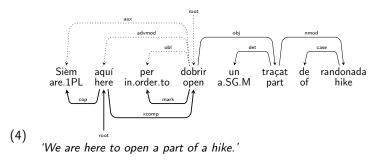

Oelexicalized parsing: experiments and results

- Manual annotation analysis
- Conclusions and future work

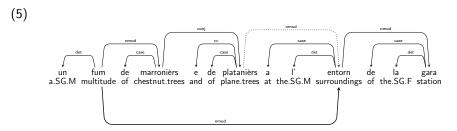
<ロ> < 部> < 書> < 書> 差 のQで 13/19


Reflexive clitics:

- POS=PRON, no morphosyntactic traits in the Occitan sample \rightarrow indistinguishable from other pronouns
- Most often annotated as nsubj, obj or iobj rather than expl


Pronoun clusters:

- Sentence-initial PRON often annotated as nsubj
- Other PRONs in the cluster without annotation (filtered out)
- Can be explained for the model based on French (obligatory subject), but not for the other two: Italalian and Portuguese allow for subject dropping


Auxiliaries vs copulas:

- Copula èsser 'to be' annotated as aux in proximity of a main verb
- Creates error propagation (copula dependents, root identification) requiring time-consuming corrections

Long-distance dependencies:

- All models produced relatively few long-distance dependencies with relatively low accuracy
- Well-known issue in parsing

'a multitude of chestnut trees and plane trees around the station'

- 2 Resources and tools
- Oelexicalized parsing: experiments and results
- Manual annotation analysis
- Conclusions and future work

<ロ> < 部> < 書> < 書> < 書> 差 のQで 18/19

Conclusions and future work

Recap

- 14 UD corpora in 8 Romance langauges used to train 21 models
- Models tested on a manually annotated Occitan sample
- 3 of the 5 best performing models used to preannotate new texts
- Manual annotation speed increase from 340 tok/h to 730 tok/h

New directions

- Improving PRON and AUX processing: adding PronType and VerbForm
- Given output consistency, test combining the corpora of the 3 models

General conclusions

- Clear positive impact of delexicalized cross-lingual parsing on the manual annotation of Occitan: speed increase, but also positive ergonomic effect reported by the annotator
- Reasonably quick and straightforward process

This work is part of the Linguatec Project financed by the European Regional Development Fund.

UNION EUROPÉENNE Fonds Européen de Développement Régional

イロト イヨト イヨト イヨト

19/19

References

- Delphine Bernhard, Anne-Laure Ligozat, Fanny Martin, Myriam Bras, Pierre Magistry, Marianne Vergez-Couret, Lucie Steiblé, Pascale Erhart, Nabil Hathout, Dominique Huck, et al. Corpora with part-of-speech annotations for three regional languages of france: Alsatian, Occitan and Picard. In 11th edition of the Language Resources and Evaluation Conference, 2018.
- Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. Low resource dependency parsing: Cross-lingual parameter sharing in a neural network parser. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), volume 2, pages 845–850, 2015.
- Teresa Lynn, Jennifer Foster, Mark Dras, and Lamia Tounsi. Cross-lingual transfer parsing for low-resourced languages: An Irish case study. In Proceedings of the First Celtic Language Technology Workshop, pages 41-49, 2014.
- Ryan McDonald, Slav Petrov, and Keith Hall. Multi-source transfer of delexicalized dependency parsers. In Proceedings of the conference on empirical methods in natural language processing, pages 62–72. Association for Computational Linguistics, 2011.
- Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Täckström, et al. Universal dependency annotation for multilingual parsing. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), volume 2, pages 92–97, 2013.
- Aleksandra Miletic, Delphine Bernhard, Myriam Bras, Anne-Laure Ligozat, and Marianne Vergez-Couret. Transformation d'annotations en parties du discours et lemmes vers le format universal dependencies: étude de cas pour l'alsacien et l'occitan. In Actes du Traitement Automatique de Langage (TALN2019), 2019.
- Jörg Tiedemann. Cross-lingual dependency parsing with universal dependencies and predicted PoS labels. In Proceedings of the Third International Conference on Dependency Linguistics (Depling 2015), pages 340–349, 2015.
- Assaf Urieli. Robust French syntax analysis: reconciling statistical methods and linguistic knowledge in the Talismane toolkit. PhD thesis, Université Toulouse le Mirail-Toulouse II, 2013.

Marianne Vergez-Couret. Description du lexique Loflòc. Technical report, 2016.

Aleksandra Miletic

- aleksandra.miletic@univ-tlse2.fr
- aleksandramiletic1207@gmail.com
- www.linkedin.com/in/aleksandra-miletic-1207