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 Goal: Define latent structures required to
 Define the well-formedness of sentences (Chomsky, 1957), or

 Compute the interpretation of the sentence (Heim & Kratzer, 1998)
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* 1. Formal syntactic structure.
e 2. Statistical structure:
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 @Goal: Characterize natural language text, as observable in corpora,
as a stochastic process.
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e Philosophical & empirical guestion: What is the link
between syntactic structure and statistical structure?

o (Generative grammarians (e.g. Chomsky, 1957; Adger, 2018):
There is no link at all.

o Structuralists (e.g. Harris, 1954): Syntactic structure can be
defined on top of statistical structure using discovery
procedures.

 Modern grammar induction (e.g. Klein & Manning, 2004, et seq.):
Assume syntactic structure is the trace of a generative
process that generated the data; try to recover the
syntactic structure from statistical structure using
Bayesian inference.
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 We conjecture a simple information-theoretic link between
syntactic and statistical structure: the Head-Dependent
Mutual Information (HDMI) Hypothesis.

Syntactic dependencies correspond to word pairs
with high mutual information.

o Explicit or implicit in nearly all previous work on grammar
INnduction (de Paiva Alves, 1996; Yuret, 1998; Klein & Manning,
2004, et seq.), but not yet explicitly tested at scale.

e Qur contribution: We give direct empirical evidence
based on a large parsed corpus, and a new theoretical
justification based on an information-theoretic
formalization of basic postulates of dependnecy grammar,
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o (Claim: Syntactic dependencies are distinguished as word
pairs with high mutual information.

* Define head-dependent mutual information for words d
and their heads h as:

p(h,d)
p(h)p(d)

* Interpretation: Amount of information contained in d about h.

A

HDMI = [ |log

* Properly, handd should be word forms.

« But in that case the MI may be hard to estimate accurately...
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 Demonstration: We simulated a joint distribution of word
pairs known to have exactly 6 bits of M.

* We tried to estimate the M| using maximum likelihood
estimation from a “corpus” drawn from this distribution.
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Data

 Data: Common Crawl English webtext as parsed by
SyntaxNet (Andor et al., 2016).

e \We take 10% of Common Crawl, filtered to contain real
utterances (i.e., not “All rights reserved”)

 We parse 10% of the filtered data.

* Result: 320 million parsed tokens.

* For evidence for the HDMI Hypothesis from POS tags in
hand-parsed UD corpora, see Futrell & Levy (2017).
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Evaluating Convergence

e We also want to make sure the Ml estimates have
converged.

* Jo do so, we compare against another baseline
which has analytically O MI.

* The permuted baseline: formed by shuffling the
empirical head-dependent pairs.

* |f the permuted baseline shows nonzero MI, it can
only be because of estimation error.

* S0 we want the Ml of the permuted baseline to go
{0 zero.
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Convergence?

o Comparison with the permuted baseline suggests
MI estimates have not not converged at 320
million tokens.

e So instead we will measure M| between:

- POS tags (~ a lower bound on the M| between
wordforms)

- Lexical clusters derived by a spectral clustering
algorithm on GloVe (Pennington et al., 2014)

(certainly a lower bound on M| between
wordforms).
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word Iin context can be explained mostly in terms of
exactly one other word, its head (Hudson, 1984, 2010).

Translation into the language of statistics: The head of a
word is a sufficient statistic for the distribution of that
word in context.

Translation into information theory:

» KL-divergence D[ word | context || word |head | =¢

e = 0 means “strong endocentricity”: the head contains 100%
of the information you need to determine the distribution of
the word. (Obviously too strong!)

e = small Is more realistic.
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e Jranslation into information theory:
» KL-divergence D] word | context || word | head | =¢€

e Proposal: When linguists are choosing heads, they are
implicitly minimizing the approximation error above.

 Choosing the head that best explains the distribution of
each word, such that the heads and dependents form a
free.

e This is also the objective implicitly minimized in grammar
induction work based on head-outward generative models
(Eisner, 1996; Klein & Manning, 2004, et seq.)
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are found by choosing heads to maximize HDMI.
(cf. Chow & Liu, 1968)

Dx1.(pL(wilw<i)||pe(wilti)) = E |log

pL(wilw;)
pe(wilt;)
p(W<ilwi)p(w;)
p(W<i)pt(wilt;) _
min Dy (pr(wilw=i)||pe(wilt;)) = min—E |log pe(wilt;)
: t p(w;)

= mtin—l[W . T

= mtaxI[W . T.

= |log
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« HDMI is a real-valued, statistical analogue to the discrete
notion of dependency.

* Could be used to evaluate syntactic formalisms...

 E.g., content-head vs. function-head dependencies
(Osborne & Gerdes, 2019): Which gives the higher
HDMI?

* Provides a principled theoretical basis for corpus linguistics.
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Summary

Syntactic dependencies correspond to word pairs with
high information.

 Empirically, in a large automatically-parsed corpora.

* T[heoretically, according to a formalization of dependency
grammar practice.

* Provides an empirically strong and theoretically well-
grounded link between syntactic structure and statistical
structure.
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Thanks all!

e All code Is available online at
https://github.com/pgian11/mi-hdmi

e Thanks to Roger Levy, Tim O’Donnell, Michael Hahn, and
Ryan Cotterell for discussions.

* Thanks to the SyntaxFest reviewers for helpful comments,
and thanks to the SyntaxFest and DeplLing organizers!
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