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• Goal: Define latent structures required to
• Define the well-formedness of sentences (Chomsky, 1957), or
• Compute the interpretation of the sentence (Heim & Kratzer, 1998) 
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• 1. Formal syntactic structure.
• 2. Statistical structure:

Lin & Tegmark (2017)
Montemurro & Zanette (2013)

• Goal: Characterize natural language text, as observable in corpora, 
as a stochastic process.
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• Philosophical & empirical question: What is the link 
between syntactic structure and statistical structure?
• Generative grammarians (e.g. Chomsky, 1957; Adger, 2018): 

There is no link at all.
• Structuralists (e.g. Harris, 1954): Syntactic structure can be 

defined on top of statistical structure using discovery 
procedures.

• Modern grammar induction (e.g. Klein & Manning, 2004, et seq.): 
Assume syntactic structure is the trace of a generative 
process that generated the data; try to recover the 
syntactic structure from statistical structure using 
Bayesian inference.
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• We conjecture a simple information-theoretic link between 
syntactic and statistical structure: the Head-Dependent 
Mutual Information (HDMI) Hypothesis. 
• Syntactic dependencies correspond to word pairs 

with high mutual information.
• Explicit or implicit in nearly all previous work on grammar 

induction (de Paiva Alves, 1996; Yuret, 1998; Klein & Manning, 
2004, et seq.), but not yet explicitly tested at scale.

• Our contribution: We give direct empirical evidence 
based on a large parsed corpus, and a new theoretical 
justification based on an information-theoretic 
formalization of basic postulates of dependnecy grammar.
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• Claim: Syntactic dependencies are distinguished as word 
pairs with high mutual information.

• Define head-dependent mutual information for words d 
and their heads h as:

• Interpretation: Amount of information contained in d about h.
• Properly, h andd should be word forms.
• But in that case the MI may be hard to estimate accurately…
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• Data: Common Crawl English webtext as parsed by 
SyntaxNet (Andor et al., 2016). 
• We take 10% of Common Crawl, filtered to contain real 

utterances (i.e., not “All rights reserved”)
• We parse 10% of the filtered data.
• Result: 320 million parsed tokens.

• For evidence for the HDMI Hypothesis from POS tags in 
hand-parsed UD corpora, see Futrell & Levy (2017).
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• We also want to make sure the MI estimates have 
converged.

• To do so, we compare against another baseline 
which has analytically 0 MI.
• The permuted baseline: formed by shuffling the 

empirical head-dependent pairs.
• If the permuted baseline shows nonzero MI, it can 

only be because of estimation error.
• So we want the MI of the permuted baseline to go 

to zero.
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dep(endency) MI of heads and dependents

nondep MI of words not in a dependency relationship, 
matched for length with dep

permuted MI between shuffled heads and dependents 
(should be zero)
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• Comparison with the permuted baseline suggests 
MI estimates have not not converged at 320 
million tokens.

• So instead we will measure MI between:
• POS tags (~ a lower bound on the MI between 

wordforms)
• Lexical clusters derived by a spectral clustering 

algorithm on GloVe (Pennington et al., 2014) 
(certainly a lower bound on MI between 
wordforms).
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• Dependency grammar claims that the distribution of a 
word in context can be explained mostly in terms of 
exactly one other word, its head (Hudson, 1984, 2010).

• Translation into the language of statistics: The head of a 
word is a sufficient statistic for the distribution of that 
word in context.

• Translation into information theory:
• KL-divergence D[ word | context  ||  word | head ] = ε

• ε = 0 means “strong endocentricity”: the head contains 100% 
of the information you need to determine the distribution of 
the word. (Obviously too strong!)

• ε = small is more realistic.
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• Translation into information theory:
• KL-divergence D[ word | context  ||  word | head ] = ε

• Proposal: When linguists are choosing heads, they are 
implicitly minimizing the approximation error above.
• Choosing the head that best explains the distribution of 

each word, such that the heads and dependents form a 
tree.

• This is also the objective implicitly minimized in grammar 
induction work based on head-outward generative models 
(Eisner, 1996; Klein & Manning, 2004, et seq.)
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• HDMI provides a way to translate between syntactic 
analysis and information-theoretic statistics.
• HDMI is a real-valued, statistical analogue to the discrete 

notion of dependency.
• Could be used to evaluate syntactic formalisms…

• E.g., content-head vs. function-head dependencies 
(Osborne & Gerdes, 2019): Which gives the higher 
HDMI?

• Provides a principled theoretical basis for corpus linguistics.
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• Syntactic dependencies correspond to word pairs with 
high information.
• Empirically, in a large automatically-parsed corpora.
• Theoretically, according to a formalization of dependency 

grammar practice.
• Provides an empirically strong and theoretically well-

grounded link between syntactic structure and statistical 
structure.



• All code is available online at  
https://github.com/pqian11/mi-hdmi 

• Thanks to Roger Levy, Tim O’Donnell, Michael Hahn, and 
Ryan Cotterell for discussions. 

• Thanks to the SyntaxFest reviewers for helpful comments, 
and thanks to the SyntaxFest and DepLing organizers!

Thanks all!
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