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But sometimes they're not
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* They are important for designing efficient parsers. For
example:

 Well-nested dependency trees with gap degree k can be
parsed in time O(n2k+3) (Gomez-Rodriguez et al., 2011).

 Dependency trees that are 1-end-point-crossing (a

subset of 2-planar trees) can be parsed in time O(n4)
(Pitler et al., 2013).
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Why do we care about crossing constraints?

They delimit the formal
language class of human
language (Chomsky &
Schutzenberger, 1963).

Human language is not
context free (Shieber,
1985), but also not fully
context-sensitive.

It is mildly context-
sensitive (Weir, 1988; Joshi
et al., 1991).

The mildly context-
sensitive languages are
defined by bounds on gap
degree.

recursively enumerable
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e QObservation: Crossing dependencies appear to be
rare, and

* (1)
e (2) subject to crossing constraints (bounded gap degree,
1-end-point-crossing, etc.)

Question: Could it be that the apparent crossing
constraints (2) are epiphenomenal, arising as a
consequence of the rarity of crossing dependencies (1)?
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Our Question

Question: Could it be that the apparent crossing
constraints are epiphenomenal, arising as a consequence
of the rarity of crossing dependencies?

* Null Hypothesis: The observed distribution of crossing
constraints in treebanks can be fully explained by a low rate
of crossing dependencies (same null hypothesis as in
Gomez-Rodriguez & Ferrer-i-Cancho, 2017)

 True Constraint Hypothesis: It is necessary to posit some
additional pressure to explain the observed crossing
constraints.

* Note: In this work we do not address potential deeper
explanations for the low rate of crossings (e.g., dependency
length minimization: Ferrer-i-Cancho, 20006)

 We only ask if a low rate of crossings is sufficient to
explain the formal crossing constraints.
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Methodology

 We implement the null hypothesis as randomly-generated

trees with the same rate of crossing dependencies as real
trees from UD treebanks.

 Then we test if the crossing constraints are violated at
different rates in the real vs. random trees.

Random trees: Uniform random trees generated using
Prifer codes, with the same distribution over sentence
lengths as real trees.
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* The gap degree of a node X is the maximum number of
discontinuities in chains of dependents emanating from X.
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* The edge degree of arc Xn = Xqis the number of nodes
between Xn and Xqthat are not transitively dominated by Xh
(call these “intervening nodes”).

* The number of end-point crossings is the number of heads
which dominate the intervening nodes between Xn = Xa.

/

X, Xi X X X» X X X, Xi X. X X X X

(a) : Edge degree=2, End-point crossing=1 (b) : Edge degree=2, End-point crossing=2
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Crossing Constraints

 For an arc Xn = Xq with an intervener, the heads’ depth
difference is the difference between the depth of X, and the
head of the intervener.
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I
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« HDD is implicated in human processing difficulty
(Phillips et al., 2005; Yadav et al., 2017)
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* riis an indicator variable for whether the tree is real (1) or random (0),

* yjis arandom intercept for the jth language.

ne beta and gamma parameters are fit to the data.

ne important coefticient is Bi, the interaction coefficient:

e |fitis negative, that means gap degree grows slower
with sentence length in real vs. random trees.
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Data

* We test on UD v2.3 treebanks of 14 languages:

* (German, English, Hindi, French, Arabic, Russian, Czech,
ltalian, Spanish, Afrikaans, Japanese, Korean, Bulgarian,
Slovak

* We exclude all root and punctuation dependencies.

* We combine trees from all treebanks (but control for
language in our regression models).

18



Are crossing constraints epiphenomenal?

Methodo
Results

Nntroduct]

on
ogy &

Conclusion

Baselines

19



Gap Degree

20



Gap Degree

* As a function of sentence length:

20



Gap Degree

As a function of sentence length:

Observed Random baseline

Gap degree
w

2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0

Sentence length

20



21

Gap Degree

As a function of sentence length:

Observed Random baseline

5 -
o 4
0]
S
g |
33
o |
5 |
(O] 5-

1-

2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0

Sentence length



21

Gap Degree

As a function of sentence length:

Observed Random baseline

5 -
o 4
0]
S
o
33
o
5 |
(O] 5-

1-

2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0

Sentence length

r.S.



21

Gap Degree

* As a function of sentence length:

Observed Random baseline

5 -
o 4"
0]
b
()}
33
o
o]
(O] 5-

1 -

2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0

Sentence length

e As a function of tree depth:

r.S.



21

Gap Degree

* As a function of sentence length:

Observed Random baseline

| |
EW
5 5:0 775 1(;.0 2I5 570 7:5 1OI.O

Sentence length

Gap degree
vooe oot @

—_

e As a function of tree depth:

Observed Random baseline

o
1

B
1

Gap degree
I\I) w

—

4 6 8 10 4 6 8 10
Tree depth

r.S.



21

Gap Degree

* As a function of sentence length:

Observed Random baseline

5 -
o 4
0]
S
g |
S 3-
o
5 |
(O] 5-

1 -

2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0

Sentence length

e As a function of tree depth:

Observed Random baseline

—

o
1

N
1

Gap degree
)] w

—

4 6 8 10 4 6 8 10
Tree depth

r.S.

p < .00



22

End-point Crossings



22

No. of end—point crossings
N

End-point Crossings

Observed Random baseline

w
1

—
1

25 5.0 7.5 10.0 25 5.0 7.5 10.0
Sentence length



22

No. of end—point crossings

w
1

N
1

—
1

2.5

End-point Crossings

Observed Random baseline

5.0 7.5 10.0 25 5.0 7.5
Sentence length

10.0

p < .001



22

w

No. of end—point crossings
- N

w
1

No. of end—point crossings
- ()

S

2

5 5.0 7.5 10.0 2.

End-point Crossings

Observed Random baseline

5 5.0 7.5 10.0

Sentence length

Observed Random baseline
4 6 8 10 4 6 8 10

Tree depth

p < .001



22

End-point Crossings

Observed Random baseline

w
1

No. of end—point crossings
N

25 5.0 7.5 10.0 25 5.0 7.5 10.0
Sentence length

Observed Random baseline
>
£ 3-
n
n
o
(@]
€
52
©
C
()
©
c - o
Z J
4 6 8 10 4 6 8 10
Tree depth

p < .001

p < .001



23

Evidence for the True Constraint Hypothesis?

End-point Heads’ Depth
Crossings Difference

as a Gap degree Edge Degree
function of...
~ length
~ arity

~ depth

v = significant interaction coefficient
X = nonsignificant interaction coefficient
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Discussion

Edge degree is most distinctively different between real and
random trees.

Gap degree is the /east distinctively different.

Most crossing constraints differ between real and random
trees as a function of tree depth.

e Future work: Control for tree depth, arity, etc. in the
random trees.
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e Could controlling crossing constraints explain the rarity of
Crossings”
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Thanks all!

All code is available online at https://github.com/
vadavhimanshu059/measures of nonProjectivity

Thanks to Roger Levy and Tim O’Donnell for discussion,
and to our SyntaxFest reviewers for helpful suggestions.

Thanks to the TLT organizers!
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