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I know you think you saw Bob yesterday.



But sometimes they’re not
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I know who you think you saw yesterday.
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• They are important for designing efficient parsers. For 
example:
• Well-nested dependency trees with gap degree k can be 

parsed in time O(n2k+3) (Gómez-Rodríguez et al., 2011). 
• Dependency trees that are 1-end-point-crossing (a 

subset of 2-planar trees) can be parsed in time O(n4) 
(Pitler et al., 2013).
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• They delimit the formal 
language class of human 
language (Chomsky & 
Schutzenberger, 1963).

• Human language is not 
context free (Shieber, 
1985), but also not fully 
context-sensitive. 

• It is mildly context-
sensitive (Weir, 1988; Joshi 
et al., 1991).

• The mildly context-
sensitive languages are 
defined by bounds on gap 
degree.
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• Observation: Crossing dependencies appear to be  
• (1) rare, and 
• (2) subject to crossing constraints (bounded gap degree, 

1-end-point-crossing, etc.) 

• Question: Could it be that the apparent crossing 
constraints (2) are epiphenomenal, arising as a 
consequence of the rarity of crossing dependencies (1)?
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• Question: Could it be that the apparent crossing 
constraints are epiphenomenal, arising as a consequence 
of the rarity of crossing dependencies?

• Null Hypothesis: The observed distribution of crossing 
constraints in treebanks can be fully explained by a low rate 
of crossing dependencies (same null hypothesis as in 
Gómez-Rodríguez & Ferrer-i-Cancho, 2017)

• True Constraint Hypothesis: It is necessary to posit some 
additional pressure to explain the observed crossing 
constraints.

• Note: In this work we do not address potential deeper 
explanations for the low rate of crossings (e.g., dependency 
length minimization: Ferrer-i-Cancho, 2006)
• We only ask if a low rate of crossings is sufficient to 

explain the formal crossing constraints. 
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• We implement the null hypothesis as randomly-generated 
trees with the same rate of crossing dependencies as real 
trees from UD treebanks.

• Then we test if the crossing constraints are violated at 
different rates in the real vs. random trees.

• Random trees: Uniform random trees generated using 
Prüfer codes, with the same distribution over sentence 
lengths as real trees.
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• For an arc Xh → Xd with an intervener, the heads’ depth 
difference is the difference between the depth of Xh and the 
head of the intervener. 

• HDD is implicated in human processing difficulty  
(Phillips et al., 2005; Yadav et al., 2017)

HDD 2
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• For example, to test if gap degree is different in real vs. 
random trees as a function of sentence length, we set up a 
Poisson regression:

• Where gi is the gap degree of the i’th sentence,
• |si| is the length of the i’th sentence,
• ri is an indicator variable for whether the tree is real (1) or random (0),
• γj is a random intercept for the j’th language.

• The beta and gamma parameters are fit to the data.
• The important coefficient is βlr, the interaction coefficient:

• If it is negative, that means gap degree grows slower 
with sentence length in real vs. random trees.
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• We test on UD v2.3 treebanks of 14 languages: 
• German, English, Hindi, French, Arabic, Russian, Czech, 

Italian, Spanish, Afrikaans, Japanese, Korean, Bulgarian, 
Slovak 

• We exclude all root and punctuation dependencies. 
• We combine trees from all treebanks (but control for 

language in our regression models). 
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p < .001

• As a function of tree depth:

Gap Degree
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as a  
function of…

Gap degree Edge Degree End-point 
Crossings

Heads’ Depth 
Difference

~ length ✗ ✓ ✓ ✗

~ arity ✗ ✓ ✓ ✓
~ depth ✓ ✓ ✓ ✓

✓ = significant interaction coefficient 
✗ = nonsignificant interaction coefficient
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• Edge degree is most distinctively different between real and 
random trees.

• Gap degree is the least distinctively different.
• Most crossing constraints differ between real and random 

trees as a function of tree depth.
• Future work: Control for tree depth, arity, etc. in the 

random trees.
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• Despite 30 years of linguistic formalisms based on a bound 
on gap degree, gap degree is the constraint for which we 
have the least evidence for the True Constraint 
Hypothesis.

• Crossing constraints are most distinctive as a function of 
depth, suggesting a connection to theories of human 
sentence processing difficulty based on tree depth 
(Yngve, 1960; Gibson & Thomas, 1999; Jing & Liu, 2015; 
Komori et al., 2019).

• Future work can control for other factors:
• Tree depth and arity
• Dependency length
• Could controlling crossing constraints explain the rarity of 

crossings?



• All code is available online at https://github.com/
yadavhimanshu059/measures_of_nonProjectivity 

• Thanks to Roger Levy and Tim O’Donnell for discussion, 
and to our SyntaxFest reviewers for helpful suggestions. 

• Thanks to the TLT organizers! 

Thanks all!
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