Learning surface order from dependency trees

William Dyer

Oracle Corp

18th International Workshop on Treebanks and Linguistic Theories, Syntax Fest, 2019

Outline

- Task
 - Syntactic tree to surface realization
 - Previous work
- Methodology
 - Weighted posets (sorted)
 - Syntactic embeddings
 - Graph neural network
 - Example
- Results
- 4 Discussion

Outline

- Task
 - Syntactic tree to surface realization
 - Previous work
- Methodology
 - Weighted posets (sorted)
 - Syntactic embeddings
 - Graph neural network
 - Example
- Results
- 4 Discussion

From syntactic tree to surface realization

(a) syntactic tree (DAG)

(b) surface realization

From syntactic tree to surface realization

(a) syntactic tree (DAG)

(b) surface realization

From syntactic tree to surface realization

(a) syntactic tree (DAG)

(b') surface realization (poset)

Outline

- Task
 - Syntactic tree to surface realization
 - Previous work
- Methodology
 - Weighted posets (sorted)
 - Syntactic embeddings
 - Graph neural network
 - Example
- Results
- 4 Discussion

Previous linguistic work

- Specific constituents
 - demonstratives, numerals, adjectives (Greenberg, 1963)
 - ► manner, place, time (Boisson, 1981)
 - adjective order restrictions (Scott, 2002)
 - complements and adjuncts
- General tree principles
 - "what belongs together semantically is also placed close together" (Behaghel, 1932)
 - projectivity (Marcus, 1965)
 - ► Head Proximity (Rijkhoff, 1986)
 - Early Immediate Constituents (Hawkins, 1994)
 - Dependency Distance Minimization (Hudson, 1995)
 - Dependency Locality Theory (Gibson, 2000)
 - Minimize Domains (Hawkins, 2004)
 - ▶ Uniform Information Density (Jaeger and R. Levy, 2006)

Previous linguistic work

- Specific constituents
 - demonstratives, numerals, adjectives (Greenberg, 1963)
 - ▶ manner, place, time (Boisson, 1981)
 - adjective order restrictions (Scott, 2002)
 - complements and adjuncts
- General tree principles
 - "what belongs together semantically is also placed close together" (Behaghel, 1932)
 - projectivity (Marcus, 1965)
 - Head Proximity (Rijkhoff, 1986)
 - Early Immediate Constituents (Hawkins, 1994)
 - Dependency Distance Minimization (Hudson, 1995)
 - Dependency Locality Theory (Gibson, 2000)
 - Minimize Domains (Hawkins, 2004)
 - Uniform Information Density (Jaeger and R. Levy, 2006)

Previous linguistic work

Sequential order

- "old concepts come before new ones" (Behaghel, 1932)
- "most important information first" (cf. Gundel, 1988)
- precedence relations (Gerdes and Kahane, 2001; Kahane and Lareau, 2016)
- extend DDm with info-theoretic measures (Dyer, 2018; Hahn et al., 2018)

Bag of words

- "for language is not merely a bag of words but a tool with particular properties which have been fashioned in the course of its use" (Harris, 1954)
- SR '18: First Multilingual Surface Realisation Shared Task (Mille et al., 2018)
 - determine word order and inflections
 - bigram language model with binary neural-net classification (Puzikov and Gurevych, 2018)
 - seq-to-seq MT model augmented with synthetic/outside data (Elder and Hokamp, 2018)
 - sort dependents into preceding or following groups, then by syntactic category or using max entropy classifier (Castro Ferreira et al., 2018)
 - incrementally linearize words based on dependency structure and distance (King and White, 2018)

- Bag of words
 - "for language is not merely a bag of words but a tool with particular properties which have been fashioned in the course of its use" (Harris, 1954)
- SR '18: First Multilingual Surface Realisation Shared Task (Mille et al., 2018)
 - determine word order and inflections.
 - bigram language model with binary neural-net classification (Puzikov and Gurevych, 2018)
 - seq-to-seq MT model augmented with synthetic/outside data (Elder and Hokamp, 2018)
 - sort dependents into preceding or following groups, then by syntactic category or using max entropy classifier (Castro Ferreira et al., 2018)
 - ▶ incrementally linearize words based on dependency structure and distance (King and White, 2018)

- Bag of words
 - "for language is not merely a bag of words but a tool with particular properties which have been fashioned in the course of its use" (Harris, 1954)
- SR '18: First Multilingual Surface Realisation Shared Task (Mille et al., 2018)
 - determine word order and inflections
 - bigram language model with binary neural-net classification (Puzikov and Gurevych, 2018)
 - seq-to-seq MT model augmented with synthetic/outside data (Elder and Hokamp, 2018)
 - sort dependents into preceding or following groups, then by syntactic category or using max entropy classifier (Castro Ferreira et al., 2018)
 - ▶ incrementally linearize words based on dependency structure and distance (King and White, 2018)

- Bag of words
 - "for language is not merely a bag of words but a tool with particular properties which have been fashioned in the course of its use" (Harris, 1954)
- SR '18: First Multilingual Surface Realisation Shared Task (Mille et al., 2018)
 - determine word order and inflections
 - bigram language model with binary neural-net classification (Puzikov and Gurevych, 2018)
 - seq-to-seq MT model augmented with synthetic/outside data (Elder and Hokamp, 2018)
 - sort dependents into preceding or following groups, then by syntactic category or using max entropy classifier (Castro Ferreira et al., 2018)
 - incrementally linearize words based on dependency structure and distance (King and White, 2018)

- Bag of words
 - "for language is not merely a bag of words but a tool with particular properties which have been fashioned in the course of its use" (Harris, 1954)
- SR '18: First Multilingual Surface Realisation Shared Task (Mille et al., 2018)
 - determine word order and inflections
 - bigram language model with binary neural-net classification (Puzikov and Gurevych, 2018)
 - seq-to-seq MT model augmented with synthetic/outside data (Elder and Hokamp, 2018)
 - sort dependents into preceding or following groups, then by syntactic category or using max entropy classifier (Castro Ferreira et al., 2018)
 - incrementally linearize words based on dependency structure and distance (King and White, 2018)

- Bag of words
 - "for language is not merely a bag of words but a tool with particular properties which have been fashioned in the course of its use" (Harris, 1954)
- SR '18: First Multilingual Surface Realisation Shared Task (Mille et al., 2018)
 - determine word order and inflections
 - bigram language model with binary neural-net classification (Puzikov and Gurevych, 2018)
 - seq-to-seq MT model augmented with synthetic/outside data (Elder and Hokamp, 2018)
 - sort dependents into preceding or following groups, then by syntactic category or using max entropy classifier (Castro Ferreira et al., 2018)
 - incrementally linearize words based on dependency structure and distance (King and White, 2018)

Outline

- Task
 - Syntactic tree to surface realization
 - Previous work
- 2 Methodology
 - Weighted posets (sorted)
 - Syntactic embeddings
 - Graph neural network
 - Example
- Results
- 4 Discussion

- partially ordered set (poset)
 - ▶ for ≺ trip, your ≺ trip, trip ≺ Canada, to ≺ Canada

- partially ordered set (poset)
 - ▶ for ≺ trip, your ≺ trip, trip ≺ Canada, to ≺ Canada

- partially ordered set (poset)
 - ▶ for ≺ trip, your ≺ trip, trip ≺ Canada, to ≺ Canada

- partially ordered set (poset)
 - ▶ for ≺ trip, your ≺ trip, trip ≺ Canada, to ≺ Canada

- edge-weighted poset
 - for $\stackrel{2}{\prec}$ trip, your $\stackrel{1}{\prec}$ trip, trip $\stackrel{2}{\prec}$ Canada, to $\stackrel{1}{\prec}$ Canada

- edge-weighted poset
 - ▶ for $\stackrel{2}{\prec}$ trip, your $\stackrel{1}{\prec}$ trip, trip $\stackrel{2}{\prec}$ Canada, to $\stackrel{1}{\prec}$ Canada

- edge-weighted poset
 - for $\stackrel{2}{\prec}$ trip, your $\stackrel{1}{\prec}$ trip, trip $\stackrel{2}{\prec}$ Canada, to $\stackrel{1}{\prec}$ Canada

- edge-weighted poset
 - for $\stackrel{2}{\prec}$ trip, your $\stackrel{1}{\prec}$ trip, trip $\stackrel{2}{\prec}$ Canada, to $\stackrel{1}{\prec}$ Canada

Topologically sorting a weighted poset

Algorithm 1: Given an edge-weighted *poset*, construct a total order such that nodes with smallest weights are adjacer

Topologically sorting a weighted poset

Algorithm 1: Given an edge-weighted poset, construct a total order such that nodes with smallest weights are adjacent.

```
1.
         function WEIGHTED TOPO SORT(poset)
 2:
                order \leftarrow \emptyset
                                                                                 pempty directed graph to hold totally ordered set
 3:
                for (u, v, w_{uv}) \in poset do
 4:
                       W_{eum} \leftarrow 0

    b a sum of traversed weights

 5:
                       if u \in order then
 6:
                             while w_{\mu\nu} > w_{sum} do
                                                                                 > traverse successors of u
 7.
                                    s ← order u successor
 8:
                                    w_{us} \leftarrow order[u][s].weight
 9:
                                    W_{\text{sum}} \leftarrow W_{\text{sum}} + W_{\text{us}}
10:
                                    if w_{uv} < w_{sum} then
11.
                                           II ← S
                                                                                 ▷ µ becomes its successor s
12:
                                                                                 \triangleright w_{VS} is how much w_{SUM} overshot w_{UV}
                             W_{VS} \leftarrow W_{SUM} - W_{UV}
13:
                             order.UPDATE EDGE(u, s, ) \leftarrow
                                                                                 \triangleright change existing (u, s)...
14.
                                    [(u, v, w_{US} - w_{VS}), (v, s, w_{VS})]
                                                                                 \triangleright ... to (u, v) and (v, s) and update weights
15:
                       else if v \in order then
16:
                             while w_{uv} > w_{sum} do

    b traverse predecessors of v

17.
                                    p \leftarrow order.v.predecessor
18:
                                    w_{pv} \leftarrow order[p][v].weight
19:
                                    W_{SUM} \leftarrow W_{SUM} + W_{DV}
20.
                                    if w_{iiv} < w_{sum} then
21.
                                          v \leftarrow p

    v becomes its predecessor p

22:
                                                                                 \triangleright w_{DU} is how much w_{SUM} overshot w_{UV}
                             W_{DIJ} \leftarrow W_{SIJM} - W_{IJV}
23:
                             order.UPDATE EDGE(p, v, ) \leftarrow
                                                                                 \triangleright change existing (p, v)...
24.
                                    [(p, u, w_{pu}), (u, v, w_{pv} - w_{pu})]
                                                                                 \triangleright ... to (p, u) and (u, v) and update weights
25:
                       else
26:
                             order.ADD EDGE(u, v, w, v)
27.
                return TOPO SORT(order)
                                                                                 > return topological sort of order graph
```

Outline

- Task
 - Syntactic tree to surface realization
 - Previous work
- Methodology
 - Weighted posets (sorted)
 - Syntactic embeddings
 - Graph neural network
 - Example
- Results
- 4 Discussion

- Distributional hypothesis
 - "you shall know a word by the company it keeps" (Firth, 1957)
- Represent words as dense vectors (via NN)
 - ▶ dancing [0.43 1.91 -0.22 0.95 -0.89 ...]
 - similar words have cosine-similar vectors
- Context
 - ▶ linear (continuous bag-of-words) word2vec (Mikolov et al., 2013)
 - ▶ dancing similar to singing, dance, dances, dancers
 - syntactic word2vecf (O. Levy and Goldberg, 2014)
 - dancing similar to singing, rapping, miming, busking

- Distributional hypothesis
 - "you shall know a word by the company it keeps" (Firth, 1957)
- Represent words as dense vectors (via NN)
 - ▶ dancing [0.43 1.91 -0.22 0.95 -0.89 ...]
 - similar words have cosine-similar vectors
- Context
 - ▶ linear (continuous bag-of-words) word2vec (Mikolov et al., 2013)
 - ▶ dancing similar to singing, dance, dances, dancers
 - ▶ syntactic word2vecf (O. Levy and Goldberg, 2014)
 - dancing similar to singing, rapping, miming, busking

- Distributional hypothesis
 - "you shall know a word by the company it keeps" (Firth, 1957)
- Represent words as dense vectors (via NN)
 - ▶ dancing [0.43 1.91 -0.22 0.95 -0.89 ...]
 - similar words have cosine-similar vectors
- Context
 - ► linear (continuous bag-of-words) word2vec (Mikolov et al., 2013)
 - dancing similar to singing, dance, dances, dancers
 - syntactic word2vecf (O. Levy and Goldberg, 2014)
 - dancing similar to singing, rapping, miming, busking

- Distributional hypothesis
 - "you shall know a word by the company it keeps" (Firth, 1957)
- Represent words as dense vectors (via NN)
 - ▶ dancing [0.43 1.91 -0.22 0.95 -0.89 ...]
 - similar words have cosine-similar vectors
- Context
 - ▶ linear (continuous bag-of-words) word2vec (Mikolov et al., 2013)
 - dancing similar to singing, dance, dances, dancers
 - syntactic word2vecf (O. Levy and Goldberg, 2014)
 - dancing similar to singing, rapping, miming, busking

Outline

- Task
 - Syntactic tree to surface realization
 - Previous work
- Methodology
 - Weighted posets (sorted)
 - Syntactic embeddings
 - Graph neural network
 - Example
- Results
- 4 Discussion

Graph neural network (GNN)

• Graph Nets (GN) framework (Battaglia et al., 2018)

Graph neural network (GNN)

- Graph Nets (GN) framework (Battaglia et al., 2018)
- Message-passing neural network (MPNN) (Gilmer et al., 2017)
- Spatial-based graph convolutions and pooling (Wu et al., 2019)

Outline

- Task
 - Syntactic tree to surface realization
 - Previous work
- Methodology
 - Weighted posets (sorted)
 - Syntactic embeddings
 - Graph neural network
 - Example
- Results
- 4 Discussion

Example - word2vecf

(a) [input] conllu file (abridged)

```
9
          for
   for
                  ADP
                        11
                            case
10
                  PRON
                        11
                            nmod:poss
   your you
11
   trip trip NOUN
                         3
                            obl
12
      t o
               ADP
                        13
   t \circ
                            case
13
   Canada Canada PROPN
                        11
                            nmod
```

(b) [output] syntactic embeddings

Example - word2vecf

(a) [input] conllu file (abridged)

```
9
           for
   for
                  ADP
                         11
                             case
10
                  PRON
                         11
                             nmod:poss
   your you
11
   trip trip NOUN
                          3
                             obl
12
        tο
                ADP
                         13
   t \circ
                             case
13
   Canada Canada PROPN
                         11
                             nmod
```

(b) [output] syntactic embeddings

```
[1.69 - 0.51 ...]
for | ADP | case
your|PRON|nmod:poss
                        [0.92 -0.61 ...]
trip|NOUN|obl
                        [0.17 -0.11 ...]
                        [1.24 -0.59]
                                        . . . ]
to | ADP | case
canada | PROPN | nmod
                        [0.05 -0.05]
                                        . . . ]
                        [0.12 -0.80]
ADP | case
                                        . . . ]
                        [0.10 -0.07]
ADP
                                        . . . 1
```

Example - GNN

(c) [input] directed networkx graph of dependency tree

(d) [output] directed graph with learned edge attributes

Example - GNN

(c) [input] directed networkx graph of dependency tree

(d) [output] directed graph with learned edge attributes

Example - topological sort

(e) [input] edge-weighted poset

(f) [output] topological sort

Example - topological sort

(e) [input] edge-weighted poset

(f) [output] topological sort

Baseline

Average dependency distance

- ► for |ADP | case ≺ trip | NOUN | obl
- ▶ your|PRON|nmod:poss ≺ trip|NOUN|obl
- ► trip|NOUN|obl ≺ PROPN|nmod
- ▶ to|ADP|case ≺ PROPN|nmod

Baseline

Average dependency distance

- for|ADP|case ≺ trip|NOUN|obl
- ▶ your|PRON|nmod:poss ≺ trip|NOUN|obl
- 1.83 ► trip|NOUN|obl ≺ PROPN|nmod
- ▶ to|ADP|case ≺ PROPN|nmod

Baseline

Average dependency distance

- ▶ for|ADP|case \prec trip|NOUN|obl
- your|PRON|nmod:poss ≺ trip|NOUN|obl
- ► trip|NOUN|obl ≺ PROPN|nmod
- ▶ to|ADP|case ≺ PROPN|nmod

Results

	SPI	EARMAN'S	ρ [-1,1]	PROJECTIVITY [0,1]			
	AVG		GNN	AVG		GNN	UD
Afrikaans	0.707		0.773	0.530		0.650	0.939
Armenian	0.628	<u></u>	0.672	0.413	~	0.585	0.987
Czech	0.665	√	0.659	0.359		0.469	0.982
English	0.634		0.775	0.496		0.680	0.995
French	0.677		0.729	0.531		0.669	0.998
Greek	0.731		0.754	0.503		0.651	0.996
Hungarian	0.635		0.609	0.440		0.598	0.969

Results

	SPI	EARMAN'S	ρ [-1,1]	PROJECTIVITY [0,1]			
	AVG		GNN	AVG		GNN	UD
Irish	0.674		0.753	0.461		0.603	0.978
Italian	0.657		0.796	0.482		0.651	0.996
Latin	0.614	~~~	0.582	0.613		0.729	0.855
Maltese	0.729		0.750	0.498		0.682	0.995
Slovenian	0.549	7	0.567	0.663		0.798	0.967
Telugu	0.916	<u>~~~</u>	0.931	0.925		0.971	0.997
Uyghur	0.728		0.727	0.629		0.762	0.976

- Engineering
 - not E2E, but using ML to address parts of problem
 - useful data structure for representing surface realizations
 - entirely within dependency framework
- What is GNN learning?
 - relative individual dependency-distance tolerances ...
 - based on context of words (embeddings) and structure (MPNN)
- Emergent projectivity rate
 - no baked-in notion or representation of projectivity
 - rate reflects (approaches) that of training data

Engineering

- not E2E, but using ML to address parts of problem
- useful data structure for representing surface realizations
- entirely within dependency framework
- What is GNN learning?
 - relative individual dependency-distance tolerances ...
 - based on context of words (embeddings) and structure (MPNN)
- Emergent projectivity rate
 - no baked-in notion or representation of projectivity
 - rate reflects (approaches) that of training data

Engineering

- not E2E, but using ML to address parts of problem
- useful data structure for representing surface realizations
- entirely within dependency framework

What is GNN learning?

- relative individual dependency-distance tolerances ...
- based on context of words (embeddings) and structure (MPNN)
- Emergent projectivity rate
 - no baked-in notion or representation of projectivity
 - rate reflects (approaches) that of training data

- Engineering
 - not E2E, but using ML to address parts of problem
 - useful data structure for representing surface realizations
 - entirely within dependency framework
- What is GNN learning?
 - relative individual dependency-distance tolerances ...
 - based on context of words (embeddings) and structure (MPNN)
- Emergent projectivity rate
 - no baked-in notion or representation of projectivity
 - rate reflects (approaches) that of training data

Future study

- improve design of GNN
- customize hyperparameters based on corpus
- use newer embedding frameworks
- develop/find efficient algorithm for sorting weighted posets
- apply weighted posets to study graph-theoretic measures

Works cited I

- Peter W. Battaglia et al. (2018). "Relational inductive biases, deep learning, and graph networks". In: arXiv:1806.01261 [cs, stat].
- Otto Behaghel (1932). Deutsche Syntax eine geschichtliche Darstellung. Heidelberg: Carl Winters Unversitätsbuchhandlung.
- Claude Boisson (1981). "Hiérarchie universelle des spécifications de temps, de lieu, et de manière.". In: Confluents 7, pp. 69–124.
- Thiago Castro Ferreira, Sander Wubben, and Emiel Krahmer (2018). "Surface Realization Shared Task 2018 (SR18): The Tilburg University Approach". In: Proceedings of the First Workshop on Multilingual Surface Realisation. Melbourne, Australia: ACL, pp. 35–8.
- William Dyer (2018). "Integration complexity and the order of cosisters". In: Proceedings of the Second Workshop on Universal Dependencies (UDW 2018). Brussels, Belgium: ACL, pp. 55–65.
- Henry Elder and Chris Hokamp (2018). "Generating High-Quality Surface Realizations Using Data Augmentation and Factored Sequence Models". In: Proceedings of the First Workshop on Multilingual Surface Realisation. Melbourne, Australia: ACL, pp. 49–53.
- Ramon Ferrer-i-Cancho (2017). "Towards a theory of word order. Comment on" Dependency distance: a new perspective on syntactic patterns in natural language" by Haitao Liu et al". In: *Physics of Life Reviews*.
- John Rupert Firth (1957). "A synopsis of linguistic theory 1930-1955". In: Studies in Linguistic Analysis. Oxford: Philological Society, pp. 1–32.
- Kim Gerdes and Sylvain Kahane (2001). "Word Order in German: A Formal Dependency Grammar Using a Topological Hierarchy". In: *Proceedings of 39th Annual Meeting of the ACL*. Toulouse, France: ACL, pp. 220–7.
- Edward Gibson (2000). "The dependency locality theory: A distance-based theory of linguistic complexity". In: *Image, language, brain*, pp. 95–126.

Works cited II

- Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl (2017). "Neural Message Passing for Quantum Chemistry". In: arXiv:1704.01212 [cs].
- Joseph Greenberg (1963). "Some universals of grammar with particular reference to the order of meaningful elements". In: Universals of Grammar. Ed. by Joseph Greenberg. Cambridge, Massachusetts: MIT Press, pp. 73–113.
- Jeanette Gundel (1988). "Universals of topic-comment stucture". In: Studies in Syntactic Typology. Ed. by Michael Hammond, Edith Moravcsik, and Jessica Wirth. Philadelphia: John Benjamins Publishing, pp. 209–39.
- Michael Hahn, Judith Degen, Noah Goodman, Dan Jurafsky, and Richard Futrell (2018). "An Information-Theoretic Explanation of Adjective Ordering Preferences". In: Proceedings of the 40th annual conference of the Cognitive Science Society. London: Cognitive Science Society.
- Zellig S. Harris (1954). "Distributional Structure". In: WORD 10.2, pp. 146-62.
- John A. Hawkins (1994). A Performance Theory of Order and Constituency. Cambridge: Cambridge University Press.
- John A. Hawkins (2004). Efficiency and Complexity in Grammars. Oxford: Oxford University Press.
- Richard Hudson (1995). "Measuring syntactic difficulty". URL: http://dickhudson.com/wp-content/uploads/2013/07/Difficulty.pdf.
- T. Florian Jaeger and Roger Levy (2006). "Speakers optimize information density through syntactic reduction". In: Advances in neural information processing systems. pp. 849–56.
- Sylvain Kahane and François Lareau (2016). "Word Ordering as a Graph Rewriting Process". In: Formal Grammar. Ed. by Annie Foret, Glyn Morrill, Reinhard Muskens, Rainer Osswald, and Sylvain Pogodalla. Springer Berlin Heidelberg, pp. 216–39.

Works cited III

- David King and Michael White (2018). "The OSU Realizer for SRST '18: Neural Sequence-to-Sequence Inflection and Incremental Locality-Based Linearization". In: Proceedings of the First Workshop on Multilingual Surface Realisation. Melbourne, Australia: ACL, pp. 39–48.
- Omer Levy and Yoav Goldberg (2014). "Dependency-Based Word Embeddings.". In: ACL (2). Citeseer, pp. 302-8.
- Solomon Marcus (1965). "Sur la notion de projectivité". In: Mathematical Logic Quarterly 11.2, pp. 181-92.
- Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean (2013). "Efficient estimation of word representations in vector space". In: arXiv:1301.3781 [cs].
- Simon Mille, Anja Belz, Bernd Bohnet, Yvette Graham, Emily Pitler, and Leo Wanner (2018). "The First Multilingual Surface Realisation Shared Task (SR'18): Overview and Evaluation Results". In: Multilingual Surface Realisation: Shared Task and Beyond: Proceedings of the Workshop. Multilingual Surface Realisation: Shared Task and Beyond. Melbourne, Australia: ACL, pp. 1–12.
- Yevgeniy Puzikov and Iryna Gurevych (2018). "BinLin: A Simple Method of Dependency Tree Linearization". In: Proceedings of the First Workshop on Multilingual Surface Realisation. Melbourne, Australia: ACL, pp. 13–28.
- Jan Rijkhoff (1986). "Word Order Universals Revisited: The Principle of Head Proximity". In: *Belgian Journal of Linguistics* 1, pp. 95–125.
- Gary-John Scott (2002). "Stacked adjectival modification and the structure of nominal phrases". In: Functional Structure in DP and IP: The Cartography of Syntactic Structures. Vol. 1. New York: Oxford University Press, pp. 91–120.
- Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu (2019). "A Comprehensive Survey on Graph Neural Networks". In: arXiv:1901.00596 [cs. stat].

Thank you!

Weighted posets Learning surface order from dependency trees

William Dyer

william.dyer@oracle.com
researchgate.net/profile/William_Dyer5
 linkedin.com/in/william-dyer/