Interpreting and defining connections in dependency structures

Sylvain Kahane (Modyco, Université Paris Nanterre)

August 28, 2019, Paris, Depling, Syntaxfest

Connection

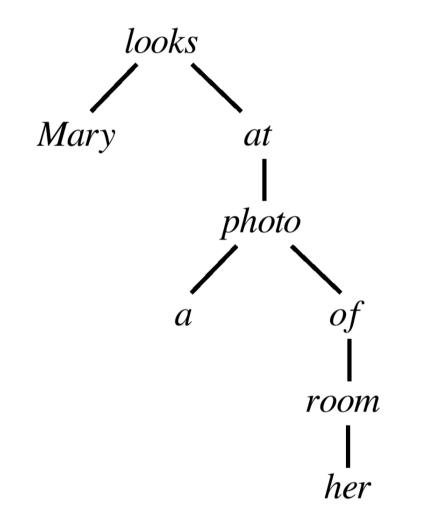
- connection = dependency without the governor-dependent hierarchy
- We will not discuss the notion of *head*.

Questions ?

- Why are the dependencies between words in traditional dependency trees?
- Do we need to define the notion of word
 before defining the notion of dependency?
- More generally, how is the syntactic structure and how to define it?

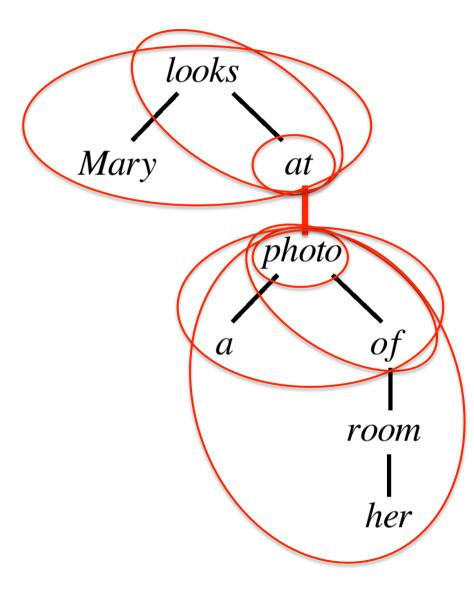
Previous works

- K. Gerdes, S. Kahane (2011) Defining dependency (and constituency), *Proceedings of the 1st international conference on Dependency Linguistics* (*Depling*).
- S. Kahane, T. Osborne (2015) Translators' introduction, in L. Tesnière, *Elements of structural syntax*, John Benjamins, 49 p.
- Kahane S., Mazziotta N. (2015) Syntactic polygraphs: A formalism extending both constituency and dependency, *Proceedings of Mathematics of Langage* (*MOL*).
- Kahane S., K Gerdes (forthcoming) *Syntaxe théorique et formelle*.

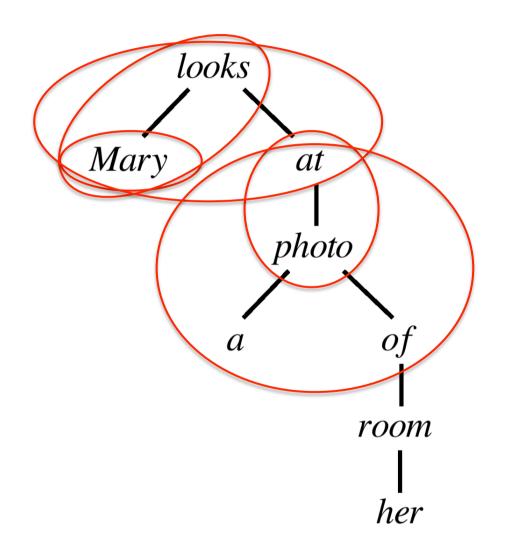

Subjectal construction

- A first example of connection: the subjectal construction
 (1) A photo of her room is hanging on the wall.
- All syntactic theories agree on the fact that there is a subjectal construction, but:
 - for PSG, combination NP/DP + VP (a photo of her room + is hanging on the wall)
 - for DG, combination between words (*photo* + *hanging* or *a* + *is* or *photo* + *is*)
 - for Tesnière, combination between nuclei (a photo + is hanging)
 - combination between chunks (Frazier & Fodor 1978, Abney 1991)
 - combination between the verb form and a constituent (a photo of her room + is hanging) (Beauzée 1765)

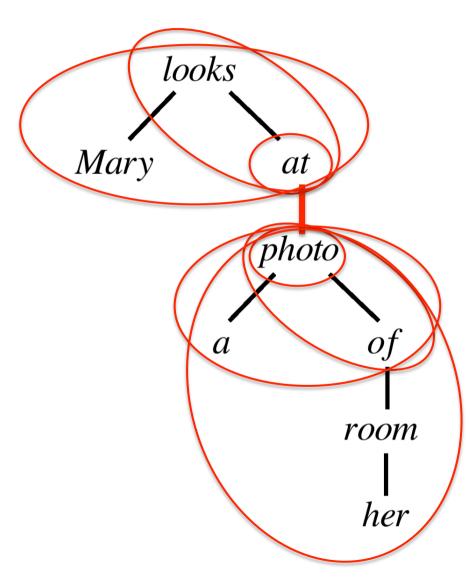
all these views on syntactic combinations


- define the same connection
- are compatible
 with dependency syntax

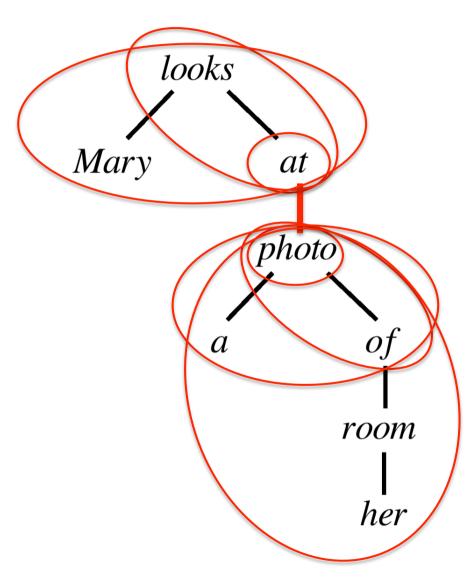
How to interpret a dependency tree


- connection ≠
 combination
- combination = instance of a connection
- which
 combinations does
 a dependency tree
 define?

How to interpret a dependency tree


- connection ≠
 combination
- combination = instance of a connection
- which
 combinations does
 a dependency tree
 define?

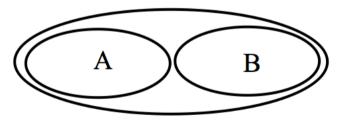
Catena


 catena = connected portion of a dependency tree
 (Osborne, Putnam, & Groß 2012)

Connection

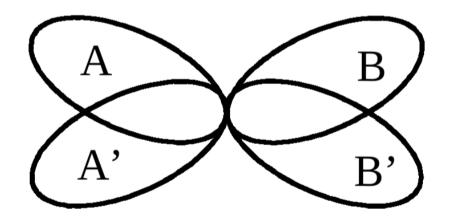
 connection = set of combinations of catenae more formally, how are the connections defined?

Combination



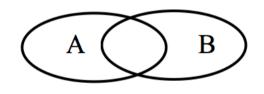
a combination is a pair {A,B} of catenae such that A ∪ B is also a catena

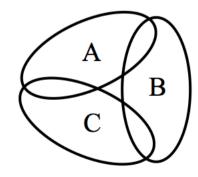
- We start with set U of units (for instance U = Catena(D))
- {A,B} is a **combination** on U if and only if


– A, B, and A \cup B are in U

-A and B are disjoint (A \cap B = \emptyset)

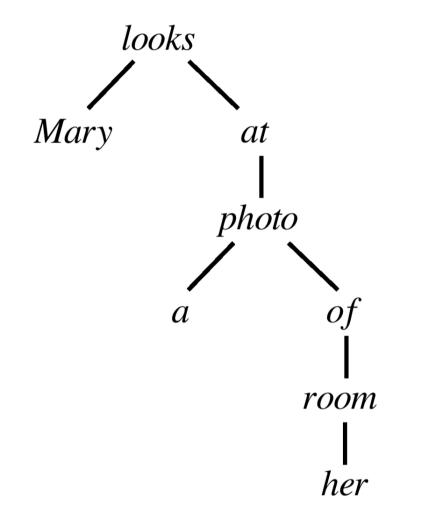
Combi(U) = set of combinations on U


- **connection** = set of compatible combinations
- Relation of **compatibility** "≈" between combinations
- $\{A,B\} \approx \{A',B'\}$ iff $A \cap A'$ and $B \cap B'$ are not empty and $A \cup A'$ and $B \cup B'$ are disjoint


- ≈ is an equivalence relation as a consequence of the following properties of U: (for every A, B, C in U)
 - Intersection Property: A \cap B non empty \Rightarrow A \cap B in U
 - Sticking Property:

 $A \cap B$ in $U \Rightarrow A \cup B$ in U.

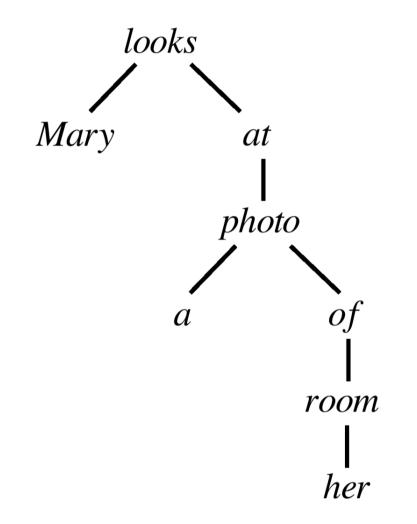
 \bigcup B in U.



- Acyclicity:
 - $A \cap B$, $B \cap C$, and $C \cap A$ non empty $\Rightarrow A \cap B \cap C$ non empty
 - \Rightarrow A \cap B \cap C non empty

- Connection(U)
 - = Combi(U)/≈
 - = equivalence classes of combinations
- Combinations are representatives of connections
- As a comparison: 1/2, 2/4, or 50/100 are representatives of the same rational number

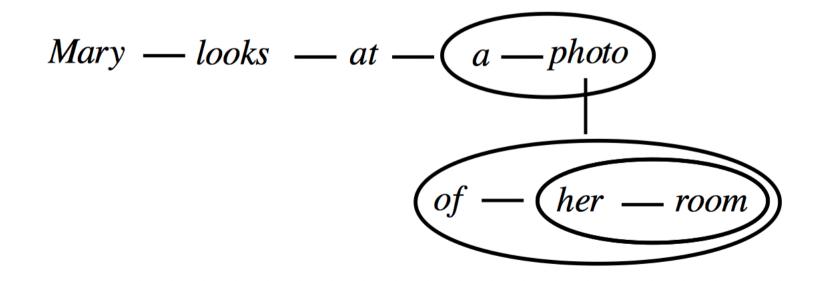
Connection structure



- U = Catena(D) =
 { Mary, ..., Mary
 looks, ..., looks at
 room, ...}
- Combi(U) = { {Mary, looks}, {Mary, looks at}, {looks,at}, {Mary looks,at}, ...}
- Connection(U)
 = Combi(U)/≈

Connection structure

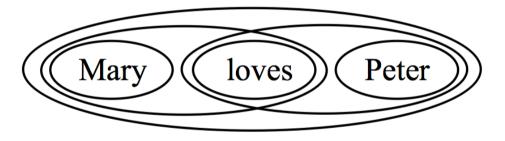
- U = Catena(D) = { Mary, ..., Mary looks, ..., looks at room, ...}
- Combi(U) = { {Mary, looks}, {Mary, looks at}, {looks,at}, {Mary looks,at}, ...}
- Connection(U) = Combi(U)/≈
- Connection structure: choose a minimal representative in each connection


Other connection structures

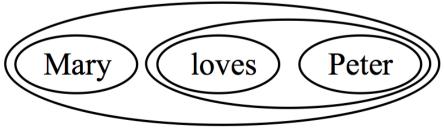
- All catenae of a dependency tree are not relevant units:
 - +at photo
 - *photo of
 - *of room

Other connection structures

- We can start only with relevant units
- Minimal combinations are not necessary between words => bubble graph

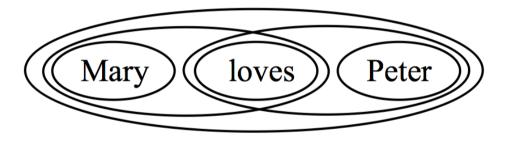

what are the consequences of such a view on connections? (connections as set of combinations)

phrase structure from a dependency-based point of view

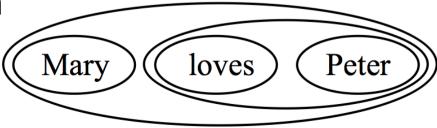

PSG vs DG

(3) *S* = *Mary loves Peter*

- DG: catenae = { S, Mary, Peter, Mary loves, loves Peter }
 - subject = { {Mary, loves }, {Mary, loves Peter } }
 - object = { {loves,Peter}, {Mary loves,Peter} }

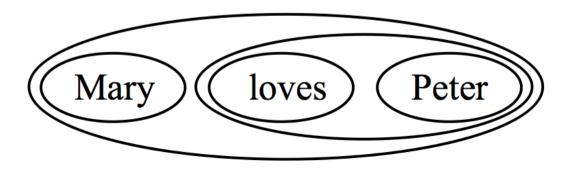


- PSG: constituents = { S, Mary, Peter, loves Peter }
 - subject = { {Mary, loves Peter} }
 - object = { {loves,Peter} }



PSG vs DG

 DG: consider more units and combinations and choose a minimal representative for each connection (independently of one another)



 PSG: choose a first connection (how?) and choose a maximal representative for this connection and so on

PSG vs DG

- Two weaknesses of PSG (towards DG):
 - PSG implies **stratification** (= **order** on **connections**) (Kahane 1997)
 - PSG choose only **one combination** for each connection (and moreover a maximal representative)

2.granularityandwords

Granularity

- a same connection can be seen at various levels of granularity
 - lexemes and (inflectional) morphemes (cf. InflP)
 - words
 - chunks
 - full lexical units (-> deep syntactic structure)
- two connections (in two different structures) are compatible if they contain a common combination

Connections vs units

- connection strictly speaking is not subject to a particular level of granularity
- the notion of connection is an abstraction on the notion of combination
- combination is inseparable from the notion of unit, but not connection
- the definition of dependency structure is not subject to a prior definition of the minimal units, and in particular to the controversial notion of word
 - we need to consider units to start the definition of the syntactic structure, but the units we consider at the outset are not necessary determining

Cognitive and NLP point of view

Cognition

- Between which units are the connections instantiated?
 - words?
 - morphemes?
 - chunks? (Frazier & Fodor 1978)
 - constituents?
- My guess: connections are instantiated at various levels; everything is possible, it all depends

NLP

- parsing:
 - dependency-based parser: connections between words
 - PS-based parser: connections between constituents
 - new possible strategies: fuzzy connections
- machine translation
 - alignment of units of various granularities
 - connections between these units must be maintained

Conclusion

- connection = set of combinations
 - combinations between words are possible representative, but not necessary the most relevant
 - no need to define the notion of word before defining the notions of connection and dependency
- DG considers more units and more combinations (than PSG) and do not order connections
- set of units (with some good properties) => connection structure