Dependency Parsing as Sequence Labeling with Head-Based Encoding and Multi-Task Learning

Ophélie Lacroix

Siteimprove, Copenhagen, Denmark ola@siteimprove.com

August 27, 2019

Dependency Parsing as Sequence Labeling

- 1. Encoding the trees into sequences of labels
- 2. Using a sequence tagger to learn and predict the labels
- 3. Decoding the predicted labels to build the trees

Alternative to transition-based and graph-based approaches

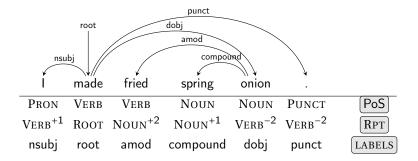
Recent studies : [Strzyz et al., 2019]

- good speed-accuracy trade-off
- compare several encodings
- best encoding relies on Part-of-Speech (PoS) tags

Dependency Tree as Sequence of Labels

Relative PoS-based (RPT) encoding of the dependencies [Strzyz et al., 2019] inspired by [Spoustová and Spousta, 2010]

- what is the PoS-tag of the head ?
- what is its relative position to the child ?



Some flaws

- PoS-tagging is a necessary pre-processing task for RPT
- [Strzyz et al., 2019] no evaluation of PoS-tagging speed
- ▲ Neural transition-based parsers can leave-out PoS-tags
 → multi-task learning of PoS-tagging and dependency parsing
- ∧ Rare and ambiguous PoS-tags are not reliable
 - \rightarrow new head-based encoding

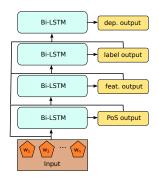
Sequence Labeling Pipeline : PoS-tagging and Dependency Parsing Multi-task learning strategies

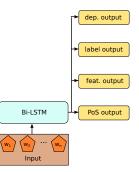
Stacked [Hashimoto et al., 2017]

one layer = one task

Shared [Søgaard and Goldberg, 2016]

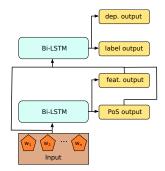
share parameters





Combined Multi-task Learning Strategy

Combined = Shared + Stacked



Experiments: Multi-task Learning Strategies

	Relative PoS-tag based dep. encoding					
	Shared		Stacked		Combined	
Lang.	UAS	LAS	UAS	LAS	UAS	LAS
cs	85.36	81.29	87.50 [†]	83.66 [†]	86.84	82.92
en	80.33	76.17	82.50	78.41	81.88	77.87
fi	77.05	71.37	80.80 [†]	75.95 [†]	79.85	74.85
grc	67.98	60.28	68.61	61.29	68.96	61.41
he	72.28	65.52	77.80^{+}	71.56^{\dagger}	75.53	69.27
kk	42.89	18.88	41.27	17.36	44.08 [†]	19.36^{\dagger}
ta	62.89	50.65	63.11	51.37	63.45	52.29 [†]
zh	68.28	61.90	70.91	64.66	71.00	65.00
avg	69.63	60.76	71.56	63.03	71.45	62.87

Combined strategy:

parsing speed increased by 48% compared to the Stacked

A New Encoding?

Flaws of the *relative PoS-tag based* encoding:

- infrequent tags:
 - ▶ 90% tokens (in EN UD) are tagged with the same 15 RPT tags among 198!
- consecutive PoS-tags with similar roles:
 - ▶ NOUN & PROPN or VERB & AUX
 - make the prediction of the relative position less accurate

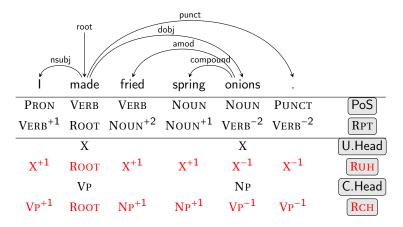
New encoding: Relative Head-Based Encoding

- head-tags instead of PoS-tags
- reduces the size of the tagset

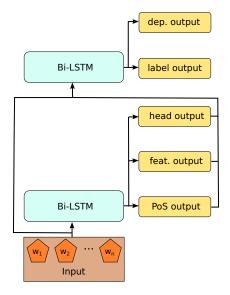
Relative Head-Based Encoding

Coarse-grained VS fine-grained encoding strategies

- ► Relative Unique Head (RUH): X
- ► Relative Chunk Head (RCH): VP, NP, AP, X



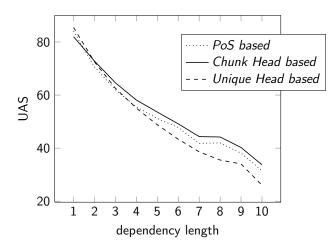
Combined Strategy with Head Based Encoding



Experiments: Encodings Comparison

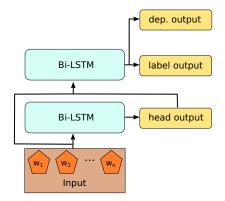
	Rel. PoS-Tag based encoding		Rel. Unique Head based encoding		Relative Chunk Head based encoding	
Lang.	UAS	LAS	UAS	LAS	UAS	LAS
cs	86.84 [†]	82.92	86.24	83.11	86.09	82.31
en	81.88	77.87	81.48	77.34	82.70 [†]	78.76^{\dagger}
fi	79.85	74.85	77.33	72.36	79.89	75.08
grc	68.96	61.41	67.61	59.72	68.71	61.39
he	75.53	69.27	81.48 [†]	74.12^{\dagger}	76.93	70.13
kk	44.08	19.36	47.61 [†]	21.70^{\dagger}	40.19	18.95
ta	63.45	52.29	62.13	50.52	65.48 [†]	54.32 [†]
zh	71.00	65.00	71.85	65.26	73.02 [†]	66.82 [†]
avg.	71.45	62.87	71.97	63.02	71.63	63.47

Dependency Length



- with RUH : many infrequent high relative position
- precision on heads : -6 on chunk heads compared to PoS-tags

Ablating PoS-tagging



Experiments: Ablating PoS tagging

	Relative	e Chunk H		ad based encoding -PoS/feat		
Lang.	UAS	LAS	UAS	LAS		
CS	86.09	82.31	85.96	82.06		
en	82.70	78.76	81.61	77.33		
fi	79.89	75.08	78.43	72.64		
grc	68.71	61.39	67.91	60.44		
he	76.93	70.13	77.49	69.97		
kk	40.19	18.95	37.30	17.04		
ta	65.48	54.32	60.70	49.04		
zh	73.02	66.82	71.17	64.34		
avg.	71.63	63.47	70.07	61.61		

Conclusion

- Multi-task learning combined strategy
 - on par with a sequential (stacked) approach
 - significantly faster at parsing sentences
- New head-based encoding of the dependencies as labels
 - outperforms the *PoS-based* encoding for a majority of the languages
 - choice of the head tagset is crucial

Hashimoto, K., Xiong, C., Tsuruoka, Y., and Socher, R. (2017).

A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks.

In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP 2017).

Søgaard, A. and Goldberg, Y. (2016).

Deep multi-task learning with low level tasks supervised at lower layers.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016).

- Spoustová, D. and Spousta, M. (2010).
 Dependency Parsing as a Sequence Labeling Task.
 The Prague Bulletin of Mathematical Linguistics.
- Strzyz, M., Vilares, D., and Gómez-Rodríguez, C. (2019). Viable Dependency Parsing as Sequence Labeling.

In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2019).