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Outline

• Aim: to produce a means of parsing low-resource languages

• We compare the usefulness of the following three approaches:

o Monolingual: Trained on small amounts of target language data

o Cross-lingual: Trained only on data from related support languages

o Multilingual: Trained on both support and target language data



Motivation

• Basic NLP technologies are still available only for a 
tiny fraction of the languages of the world.

• An increasing interest in techniques for supporting 
low-resource languages.

• Is it more worthwhile to simply annotate a small 
amount of training data in the target language?



Related Work

• Main approaches:
– Annotation projection (Hwa et al., 2002; Hwa et al., 2005; 

Tiedemann, 2014)
– Model transfer (Zeman and Resnik, 2008; McDonald et 

al., 2011)
– Treebank translation (Tiedemann et al., 2014)
– Multilingual parsing (Ammar et al. 2016, Smith et al. 

2018a)



Languages

• From Universal Dependencies v2.3 (Nivre et al., 2016; 2018) we 
take three language clusters:
– Faroese

o Support languages: Danish, Norwegian (Nynorsk) and Swedish
– North Saami

o Support languages: Estonian, Finnish, Hungarian

– Upper Sorbian
o Support languages: Czech, Polish and Slovak



Methodology

• We adopt a multilingual parsing approach (Ammar et al. 
2016, Smith et al. 2018a).

• We use lexicalized models and do not presuppose PoS
tagging or any other preprocessing except tokenization 
for the target language.

• We instead rely on word, character and language 
embeddings. 



Methodology

• We use UUParser v2.3 (de Lhoneux et al., 2017a; Smith 
et al., 2018a).

• An adaptation of the transition-based parser of 
Kiperwasser and Goldberg (2016) specifically for 
multilingual models.

• It relies on a BiLSTM to learn representations of tokens in 
context.



Experimental setup

• For each language cluster, we train a total of 15 models: 
– cross-lingual models on data from every combination 

of one, two or three support languages (7 models)
– multilingual models on the same data sets plus 

target language data (7 models)
– a monolingual model only on target language data



Results

Test set accuracy for target languages (LAS). –T = cross-lingual models trained without target language
data. +T = models trained on target language data; monolingual (first row) and multilingual.



Monolingual > Cross-lingual

Test set accuracy for target languages (LAS). –T = cross-lingual models trained without target language
data. +T = models trained on target language data; monolingual (first row) and multilingual.



Multilingual > Monolingual (most of the time)

Test set accuracy for target languages (LAS). –T = cross-lingual models trained without target language
data. +T = models trained on target language data; monolingual (first row) and multilingual.



Multilingual > Monolingual (most of the time)

Test set accuracy for target languages (LAS). –T = cross-lingual models trained without target language
data. +T = models trained on target language data; monolingual (first row) and multilingual.



Results: Learning curves



Conclusion

• Training a monolingual model on target language data gives 
better performance than any cross-lingual model as soon as 
we have around 200 annotated target language sentences.

• Adding data from related languages to train a multilingual 
model can improve performance further by up to 7 LAS 
points. 

• In conclusion, to develop a parser for a low-resource 
language, annotate as much data as you can afford and add 
data from related languages if available.
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