Dependency Distance VS Frequency

Xinying Chen, University of Ostrava Kim Gerdes, Sorbonne Nouvelle, LPP(CNRS), Almanach (Inria)

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education CZ.02.2.69/0.0/0.0/16 027/0008472

- Motivation
- Hypothesis

- Motivation
- Hypothesis
- Materials and methods

- Motivation
- Hypothesis
- Materials and methods
- Results and discussion

• The neglected individual dependency distance

- The neglected individual dependency distance
 - $_{\odot}\,$ The popularity of Mean Dependency Distance

- The neglected individual dependency distance
 - $_{\odot}\,$ The popularity of Mean Dependency Distance

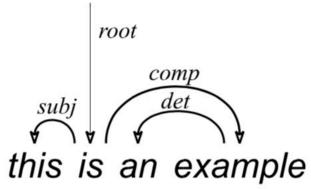
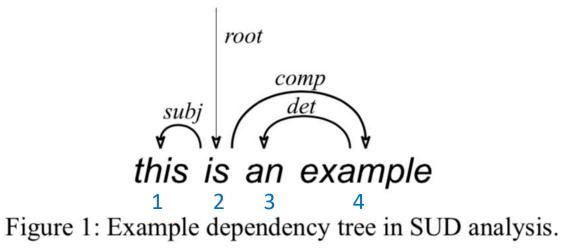
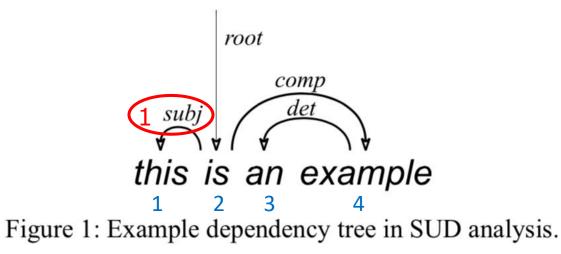
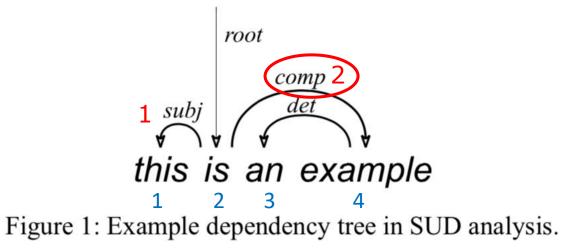
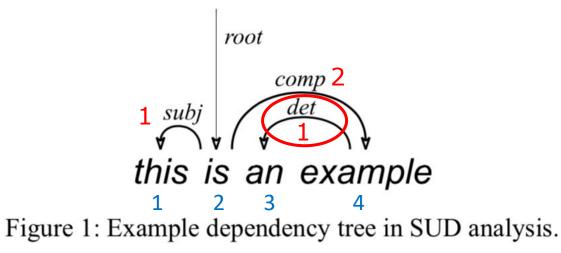
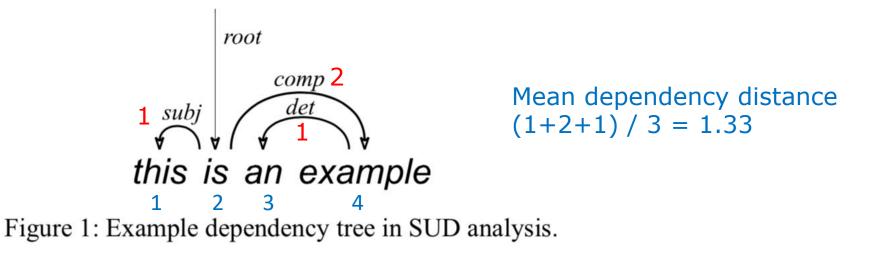




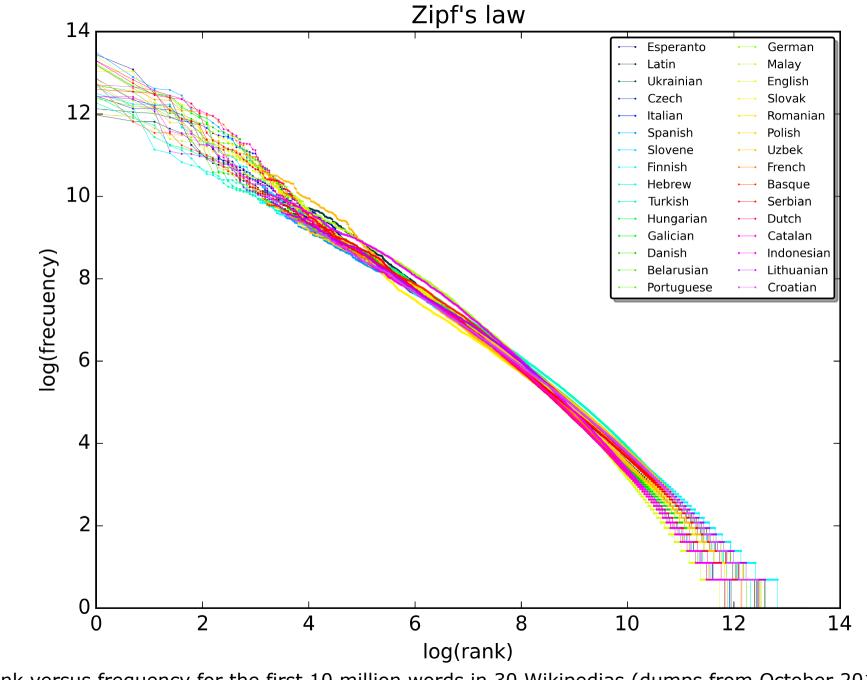
Figure 1: Example dependency tree in SUD analysis.


- The neglected individual dependency distance
 - $_{\odot}\,$ The popularity of Mean Dependency Distance


- The neglected individual dependency distance
 - $_{\odot}\,$ The popularity of Mean Dependency Distance


- The neglected individual dependency distance
 - $_{\odot}\,$ The popularity of Mean Dependency Distance

- The neglected individual dependency distance
 - $_{\odot}\,$ The popularity of Mean Dependency Distance


- The neglected individual dependency distance
 - $_{\odot}\,$ The popularity of Mean Dependency Distance

- The neglected individual dependency distance
 - The popularity of Mean Dependency Distance
 - Individual dependency distances provide more details of the fluctuation than the average
 - Maybe not sentences, but language use

- The neglected individual dependency distance
- Power Law everywhere in language

- The neglected individual dependency distance
- Power Law everywhere in language
 - Zipf's Law (distribution law)

A plot of the rank versus frequency for the first 10 million words in 30 Wikipedias (dumps from October 2015) in a log-log scale. https://en.wikipedia.org/wiki/Zipf%27s_law

- The neglected individual dependency distance
- Power Law everywhere in language
 - Zipf's Law (distribution law)
 - Synergetic framework (relations between two features of one linguistic unit)

- The neglected individual dependency distance
- Power Law everywhere in language
 - Zipf's Law (distribution law)
 - Synergetic framework (relations between two features of one linguistic unit)

Eg. word length VS word frequency VS numbers of meaning

- The neglected individual dependency distance
- Power Law everywhere in language (lexical level)

- The neglected individual dependency distance
- Power Law everywhere in language (lexical level)
- Why not syntax level?

- The neglected individual dependency distance
- Power Law everywhere in language (lexical level)
- Why not syntax level?
 - Empirical data or treebanks ? (language, size, accuracy, annotation schema)

- The neglected individual dependency distance
- Power Law everywhere in language (lexical level)
- Why not syntax level?
 - Empirical data or treebanks ? (language, size, accuracy, annotation schema)

- The neglected individual dependency distance
- Power Law everywhere in language (lexical level)
- Why not syntax level?
 - Empirical data or treebanks ? (language, size, accuracy, annotation schema)
 - New reality: Data is there !!!

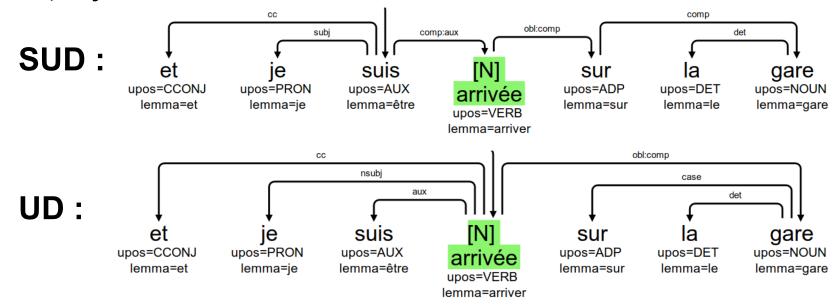
Hypothesis

• The relation between dependency distance and frequency can be formulated as a non-linear function (probably a power law function).

• PUD English Treebank from Surface-syntactic Universal Dependencies (SUD)

- PUD English Treebank from Surface-syntactic Universal Dependencies (SUD)
 - $\circ~$ Why PUD ?

- PUD English Treebank from Surface-syntactic Universal Dependencies (SUD)
 - $\circ~$ Why PUD ?
 - a parallel treebank with a wide range of languages, namely Arabic, Chinese, Czech, English, Finnish, French, German, Hindi, Indonesian, Italian, Japanese, Korean, Portuguese, Russian, Spanish, Swedish, Thai, and Turkish.

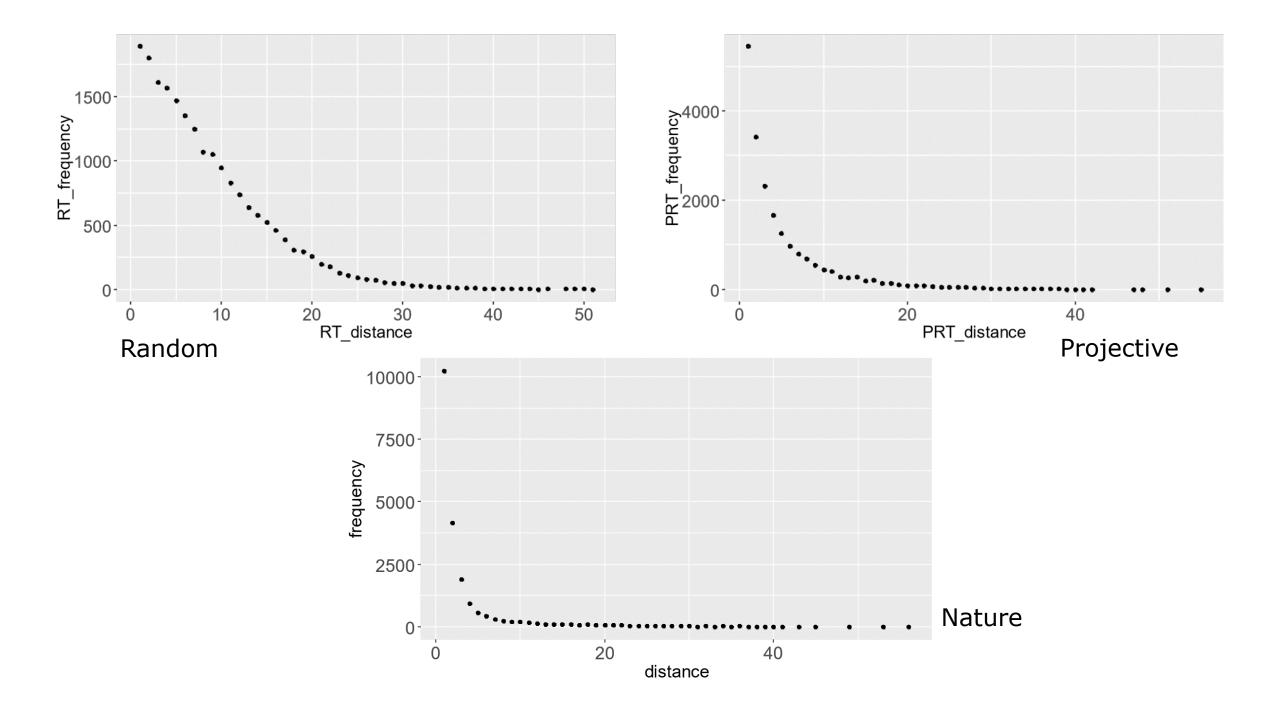

- PUD English Treebank from Surface-syntactic Universal Dependencies (SUD)
 - $\circ~$ Why PUD ?
 - Why SUD ?

- PUD English Treebank from Surface-syntactic Universal Dependencies (SUD)
 - $\circ~$ Why PUD ?
 - Why SUD ?
 - equivalent to UD
 - closer to traditional dependency grammar
 - Simpler

Gerdes, Kim, Bruno Guillaume, Sylvain Kahane, and Guy Perrier. "SUD or Surface-Syntactic Universal Dependencies: An annotation scheme near-isomorphic to UD." In: Proceedings of the Universal Dependencies Workshop 2018.

Dependency links and labels are based exclusively on **syntactic distributional** criteria \rightarrow functional heads (auxiliairies, markers, adpositions)

Meaning-Text Theory, Mel'čuk 1988; Word Grammar, Hudson 1984, 2007; Prague Dependency Treebank, Hajič et al. 2017

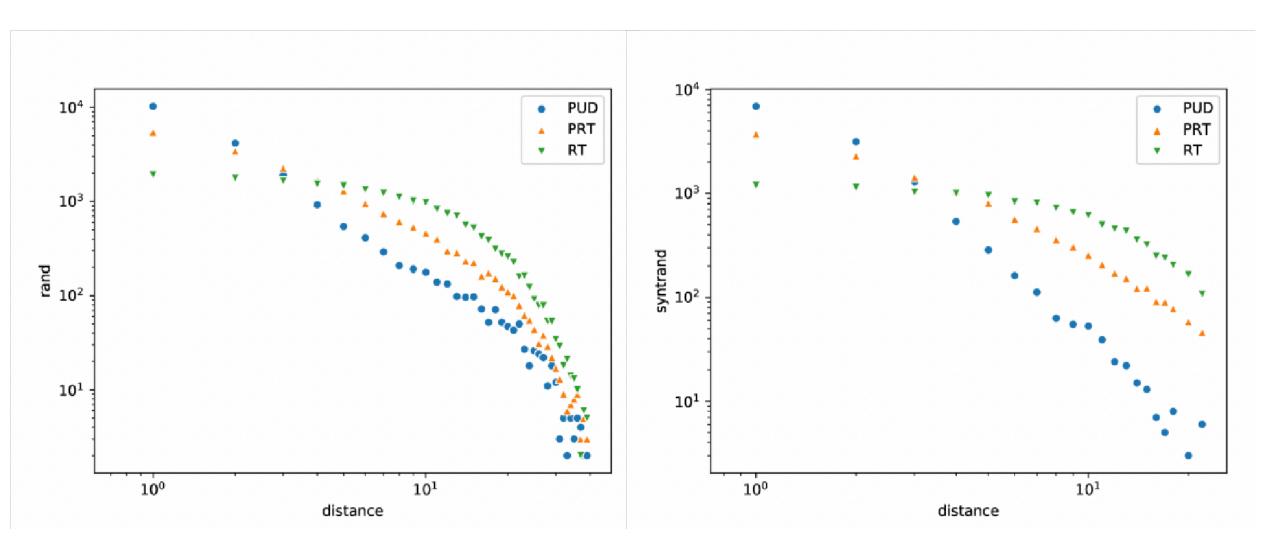


- PUD English Treebank from Surface-syntactic Universal Dependencies (SUD)
- Computations

- PUD English Treebank from Surface-syntactic Universal Dependencies (SUD)
- Computations
 - \circ Individual dependency distance
 - frequencies of each dependency distance
 - o non-linear formulations

- PUD English Treebank from Surface-syntactic Universal Dependencies (SUD)
- Computations
- Experiments

- PUD English Treebank from Surface-syntactic Universal Dependencies (SUD)
- Computations
- Experiments
 - random baseline (random trees)
 - control group (projective random trees)
 - repeat the test for syntactic dependencies (the role of syntax)
 - subj, aux, cop, case, mark, cc, dislocated, vocative, expl, discourse, det, clf


Treebank	Non-linear Model	Function
	Quedretie	y 2002 44 200x + 2 1x ²

PUD English	Quadratic	y=2963.44-206x+3.1x ²	0.34
	Exponent	<i>log(y)=7.11-0.16x</i>	0.92
	Logarithm	y=4100.8-1262log(x)	0.49
	Power Law	log(y)=10.71-2.56log(x)	0.91
Random Trees	Quadratic	y=1883.88-106.28x+1.43x ²	0.98
	Exponent	<i>log(y)=8.42-0.17x</i>	0.98
	Logarithm	y=2220.88-611.66log(x)	0.96
	Power Law	log(y)=11.23-2.37log(x)	0.74
Projective Random Trees	Quadratic	y=2551.07-168.63x+2.49x ²	0.62
	Exponent	log(y)=7.99-0.17x	0.97
	Logarithm	y=3258.25-972.05log(x)	0.75
	Power Law	log(y)=11.28-2.55log(x)	0.84

R²

- PUD English Treebank from Surface-syntactic Universal Dependencies (SUD)
- Computations
- Experiments
 - random baseline (random trees)
 - control group (projective random trees)
 - repeat the test for syntactic dependencies (the role of syntax)
 - subj, aux, cop, case, mark, cc, dislocated, vocative, expl, discourse, det, clf

Syntactic Data Set	Non-linear Model	Function	R ²
PUD English	Quadratic	y=2963.44-206x+3.1x ²	0.44
	Exponent	<i>log(y)=7.11-0.16x</i>	0.81
	Logarithm	y=4100.8-1262log(x)	0.56
	Power Law	log(y)=10.71-2.56log(x)	0.97
Random Trees	Quadratic	y=1883.88-106.28x+1.43x ²	0.98
	Exponent	<i>log(y)=8.42-0.17x</i>	0.97
	Logarithm	y=2220.88-611.66log(x)	0.95
	Power Law	log(y)=11.23-2.37log(x)	0.74
Projective Random Trees	Quadratic	y=2551.07-168.63x+2.49x ²	0.6
	Exponent	log(y)=7.99-0.17x	0.95
	Logarithm	y=3258.25-972.05log(x)	0.73
	Power Law	log(y)=11.28-2.55log(x)	0.89

• Hypothesis \checkmark

- Hypothesis \checkmark
- Power law model is probably a better choice for representing the relation between dependency distance and frequency.

- Hypothesis \checkmark
- Power law model is probably a better choice for representing the relation between dependency distance and frequency.
- Projectivity has a major role as the responsible factor for the power-law function of dependency distance.

Thank You!