What can we learn from natural and artificial dependency trees ?

Marine Courtin, LPP (CNRS) - Paris 3 Sorbonne Nouvelle Chunxiao Yan, Modyco (CNRS) - Université Paris Nanterre

Summary

- Introduce several procedures for generating random syntactic dependency trees with constraints
- Create artificial treebanks based on real treebanks
- Compare the properties of theses trees (real / random)
- Try to find out how these properties interact and to what extent the relationship between them is formally constrained and/or linguistically motivated.

What do we have to gain from comparing original and random trees ?

Motivations

- Natural syntactic trees are nice but :
 - Very complex
 - It's hard to understand how some property influences other properties
 - They mix formal and linguistic relationship between properties
- We want to find out why some trees are linguistically implausible ? i.e what makes these trees special compared to random ones

Motivations

- Natural languages have special syntactic properties and constraints that imposes limit on their variation.
- We can observe these properties by looking at natural syntactic trees.
- Some of the properties we observe might be artefacts : not properties of natural langages but properties of trees themselves (mathematical object).

 \rightarrow By also looking at artificial trees we can distinguish between the two

Methods and data preparation

Data

- Corpus : Universal Dependencies (UD) treebanks (version 2.3, Nivre et al. 2018) for 4 languages: Chinese, English, French and Japanese.
- We removed punctuation links.
- For every original tree we create 3 alternative trees.

Features

Typology of local configurations

We group the trigram configurations into 4 types.

Hypotheses

- Tree length is positively correlated with other properties.
- Particularly interested in the relationship between mean dependency distance and mean flux weight.
 - As tree length increases \Rightarrow the number of possible trees increases \Rightarrow opportunity to introduce more complex trees
 - Longer dependencies (higher MDD)
 - More nestedness (higher mean flux weight)
 - An increase in nestedness ⇒ more descendents between a governor and its direct dependents ⇒ increase in mean dependency distance.

Generating random trees

Generating random trees

We test 3 possibilities :

- Original-random : original tree, random linearisation
- Original-optimized : original tree, « optimal » linearisation
- *Random-random* : random tree, random linearisation

One more constraint : we only generate projective trees.

→ We expect that natural trees will be the furthest away from random-random and somewhere between original-random and original-optimized.

Random tree

Random projective linearisation

- 1. Start at the root
- 2. Randomly order direct dependents \rightarrow [2,1,3]
- 3. Select a random direction for each \rightarrow [« left », « left », « right »] \rightarrow [1203]
- 4. Repeat steps 2-3 until you have a full linearization \rightarrow [124503]

Optimal linearisation

- 1. Start at the root
- 2. Order direct dependents by their decreasing number of descendant nodes \rightarrow [1,3,2]
- 3. Linearize by alternating directions (eg. left, right, left) \rightarrow [2103]
- 4. Repeat until all nodes are linearized \rightarrow [425103]

[Temperley, 2008]

Generating random trees

- Why this particular algo ?
 - Separates generation of the unordered structure and of the linearisation \rightarrow this allows us to change only of the two steps.
 - Easily extensible, we have the possibility to add constraints :
 - Set a parameter for the probability of a head-final edge
 - Set a limit on lenth, height, maximum arity for a node...

• ..

Results

Results on correlations

- Non surprising results :
 - length/height :
 - strong in both artificial and real \rightarrow formal relationship, slightly intensified in non-artificial trees
 - Zhang and Liu (2018) : the relation can be described as a powerlaw function in English and Chinese ; interesting to look if the same thing can be found in artificial trees
 - MDD/MFW :
 - Strong in both real and artificial treebanks.
- Interesting results :
 - MDD/height is **stronger** in artificial than real treebanks.
 - MDD/MFW is stronger in artificial than real treebanks.

Distribution of configurations

Non-linearized case :

Potential explanations for the original distribution ?

- b ← a → c is favoured because it contains the « balanced » configuration, i.e the optimal one for limiting dependency distance.
- $a \rightarrow b \rightarrow c$ is disfavoured because it introduces too much height.

Distribution of configurations

- Random random :
 - slight preference for "chain" and "zigzag" : this is probably a by-product of the preference for $b \leftarrow a \rightarrow c$ configurations rather than $a \rightarrow b \rightarrow c$.
 - inside each group ("chain" and "zigzag" / "bouquet" and "balanced") the distribution is equally divided.
- Original optimal :
 - very marked preference for "balanced".

Figure 4: Trigram configurations distribution for French

Distribution of configurations

- Original trees :
 - Contrary to the potential explanation we advanced for the high frequency of b ← a → c configurations, "balanced" configurations are not particularly frequent in the original trees.
 - The bouquet configuration is the most frequent, and it is much more frequent in the original trees than in the artificial ones.

Figure 4: Trigram configurations distribution for French

Limitations

- We only generated projective trees.
- We looked at local configurations instead of all subtrees.
- Linear correlation may not be the most interesting observation :
 - The relationship between properties of the tree is probably not linear
 - We can directly look at the properties themselves and compare groups to see where original trees fit compared to all random groups.

Future work

- Compare directly the properties of the trees from the different groups. Which groups are more distant / similar ?
- Build a model to predict features of the tree
 - Which features can we predict from which combinations of features ?
 - Are natural trees more predictible ? They represent a smaller subset, so they could be, but at the same time they are under more complex constraints.
- Study the effects of the annotation scheme
 - How will our results be affected if we repeat the same process using an annotation scheme with functional heads ? (Yan's earlier talk, 2019)