Character-level Annotation for Chinese Surface-Syntactic Universal Dependencies

Chuanming Dong, Yixuan Li, and Kim Gerdes

Inalco, Paris

Sorbonne Nouvelle

Lattice (CNRS)

Sorbonne Nouvelle

LPP (CNRS)

Almanach (Inria)

Plan

- Chinese Wordhood
- 2. Syntactic Parsing for Chinese
- 3. Enriching Chinese treebanks with word-internal structures
- 4. Training and parsing on the character level

Chinese Wordhood

- Scriptura Continua
- Chinese Word Segmentation (CWS)
 - Often recognised as the first step for different Chinese NLP tasks
 - Confusing notion of word in modern Chinese

	咖啡 ka-fei	一个 <i>yi-g</i> e	小朋友们 xiao-peng-you-men
gloss	(transliterated)	one -quantifier	little -friend-friend -plural
meaning	coffee	one; a/an	children
GB standards	咖啡	- ↑	小朋友 们
UD treebanks	咖啡	- ↑	小朋友们
segmenters	咖啡	一个/一个	小朋友们 / 小 朋友 们 /

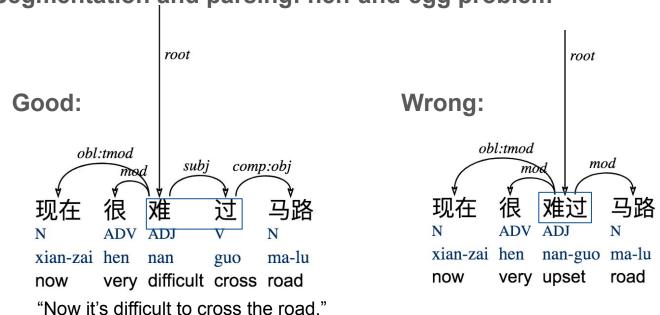
 Chinese has commonly significantly lower f-scores for parsing than European languages (Dozat & Manning 2017)

		English P	TB-SD 3.3.0	Chinese PTB 5.1		
Type	Model	UAS L	AS	UAS	LAS	
	Ballesteros et al. (2016)	93.56 9	1.42	87.65	86.21	
Transition	Andor et al. (2016)	94.61 9	2.79	-	_	
	Kuncoro et al. (2016)	95.8	4.6	_	_	
	Kiperwasser & Goldberg (2016)	93.9	1.9	87.6	86.1	
Graph	Cheng et al. (2016)	94.10 9	1.49	88.1	85.7	
	Hashimoto et al. (2016)	94.67 93	2.90	_	_	
	Deep Biaffine	95.74	4.08	89.30	88.23	

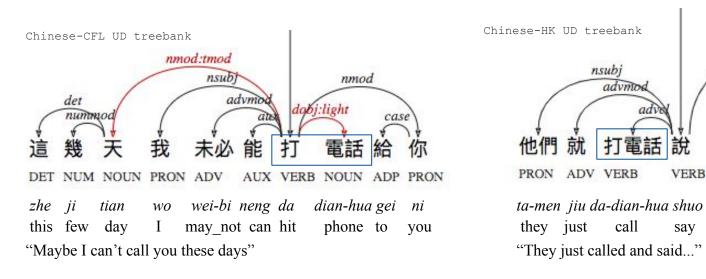
Table 4: Results on the English PTB and Chinese PTB parsing datasets

 Chinese has commonly significantly lower f-scores for parsing than European languages (Dozat & Manning 2017)

	Catalan		Chi	nese	Czech		
Model	UAS	LAS	UAS	LAS	UAS	LAS	
Andor et al.	92.67	89.83	84.72	80.85	88.94	84.56	
Deep Biaffine	94.69	92.02	88.90	85.38	92.08	87.38	
	English		German		Spanish		
	Eng	glish	Ger	man	Spa	nish	
Model	Eng UAS	glish LAS	Ger UAS	man LAS	Spa UAS	nish LAS	
Model Andor et al.							


Table 5: Results on the CoNLL '09 shared task datasets

Previous results on UD 2.0 with character-based segmenter (Shao & al. 2018)


.5	Segmentation Accuracy		UDPipe parser			Dozat et al. (2017)				
			UAS		LAS		UAS		I	.AS
	UDPipe	This Paper	UDPipe	This Paper	UDPipe	This Paper	UDPipe	This Paper	UDPipe	This Paper
Arabic	93.77	97.16	72.34	78.22	66.41	71.79	77.52	83.55	72.89	78.42
Chinese	90.47	93.82	63.20	67.91	59.07	63.31	71.24	76.33	68.20	73.04
Hebrew	85.16	91.01	62.14	71.18	57.82	66.59	67.61	76.39	64.02	72.37
Japanese	92.03	93.77	78.08	81.77	76.73	80.83	80.21	83.79	79.44	82.99
Vietnamese	85.53	87.79	47.72	50.87	43.10	46.03	50.28	53.78	45.54	48.86

Results on different languages from *Universal Word Segmentation: Implementation and Interpretation* (Shao & al. 2018). The parsing accuracies are reported in unlabelled attachment score (UAS) and labelled attachment score (LAS).

Segmentation and parsing: hen-and-egg problem

- Segmentation and parsing: hen-and-egg problem
- Incoherent segmentations in UD corpora

nsubj

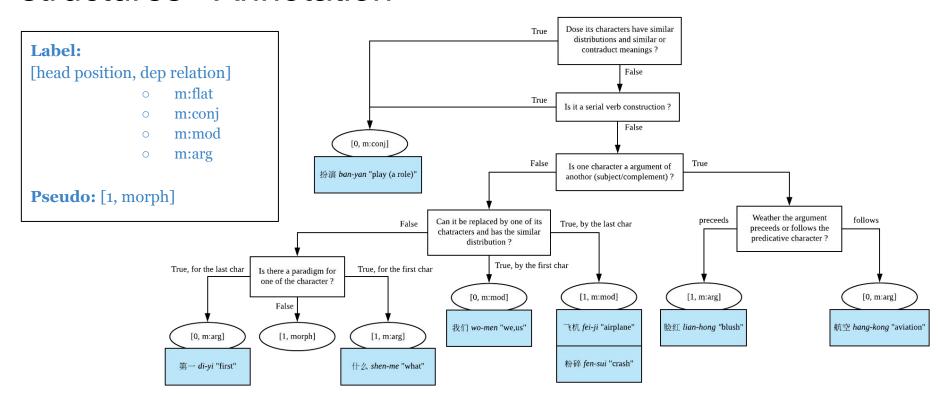
advmos

call

VERB

sav

- Segmentation and parsing: hen-and-egg problem
- Incoherent segmentations in UD corpora
- Out-Of-Vocabulary (OOV): worse results on texts with a great quantity of out-of-vocabulary terms (patent texts)

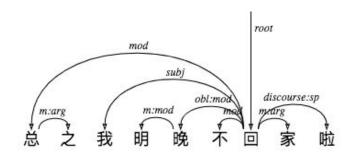

Synt. Parsing Experiment	LAS	UAS
CoNLL training, CoNLL test	88.21	90.75
CoNLL training, patent test	79.61	84.87

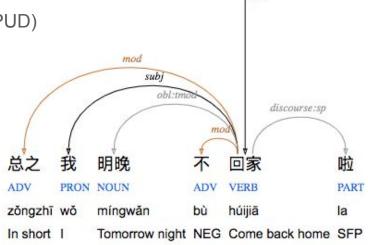
English patent texts (Burga & al. 2013)

Enriching Chinese treebanks with word-internal structures - Previous works

- Character-level dependencies parsing on Chinese corpus (Zhao 2009;
 Li & Zhou 2012; Zhang & al. 2014; Li & al. 2018)
 - large-scale annotation on Penn Treebank (PTB) and constituent Chinese Treebank
 (CTB)
 - usefulness of the word-internal structures in Chinese syntactic parsing

Enriching Chinese treebanks with word-internal structures - Annotation




Enriching Chinese treebanks with word-internal structures - Annotation

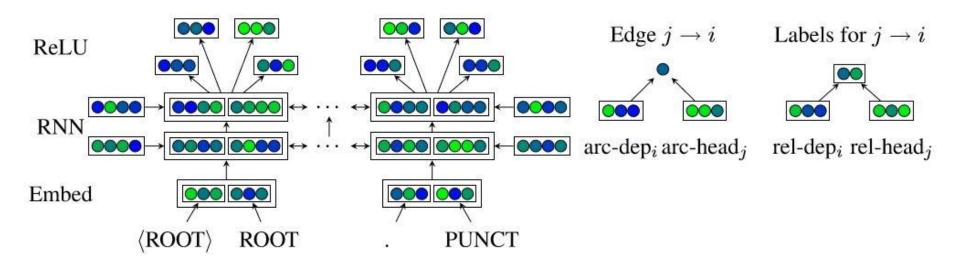
We annotated the 500 most frequent words

Corpus: all Chinese UD/SUD treebanks (CFL, GSD, HK, PUD)

Annotators: 2 (inter-annotator agreement of 88%)

root

In short, I will not go home tomorrow night.


Enriching Chinese treebanks with word-internal structures - Annotation

Tricky examples & Problems:

```
一般,64,1,m:arg???*
```

一起,一直,一定,一样

Training and parsing on the character level

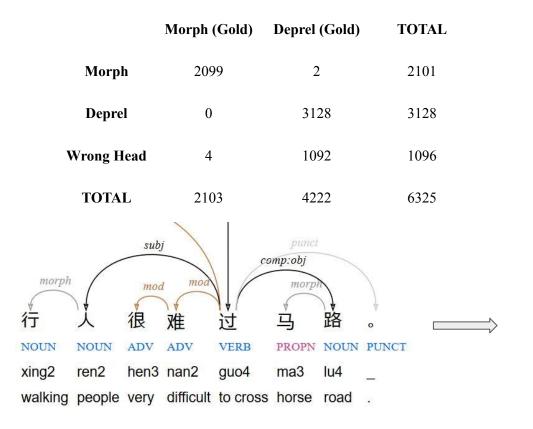
Dozat, (2017)

Training and parsing on the character level - Tagger

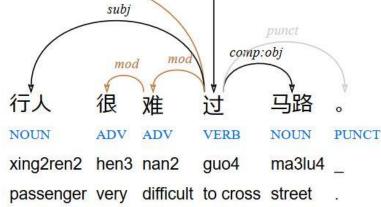
Category	Precision	Recall	F-score
ADJ	65.69%	50.00%	56.78%
ADP	63.48%	69.75%	66.47%
ADV	80.08%	76.40%	78.20%
AUX	59.84%	81.56%	69.03%
CCONJ	92.68%	58.46%	71.70%
DET	96.81%	68.94%	80.53%
INTJ	100.00%	0.00%	0.00%
NOUN	88.17%	82.27%	85.12%
NUM	63.92%	98.41%	77.50%
PART	84.03%	91.74%	87.72%
PRON	94.06%	93.14%	93.60%
PROPN	38.17%	89.29%	53.48%
PUNCT	99.84%	99.84%	99.84%
SCONJ	100.00%	0.00%	0.00%
SYM	100.00%	0.00%	0.00%
VERB	76.29%	77.56%	76.92%
TOTAL	81.85%	81.62%	81.74%

F-score of word level POS (UPOS) for our word-based tagger

Category	Precision	Recall	F-score
Category	1 I CCISION	IXCCan	1-30010
ADJ	65.52%	42.54%	51.58%
ADP	60.11%	87.90%	71.40%
ADV	75.00%	70.80%	72.84%
AUX	64.71%	86.03%	73.86%
CCONJ	92.68%	58.46%	71.70%
DET	91.22%	86.45%	88.77%
INTJ	100.00%	20.00%	33.33%
NOUN	77.87%	85.56%	81.54%
NUM	65.14%	93.65%	76.84%
PART	91.56%	94.50%	93.00%
PRON	92.47%	88.24%	90.30%
PROPN	54.05%	71.43%	61.54%
PUNCT	99.84%	100.00%	99.92%
SCONJ	20.00%	4.35%	7.14%
SYM	100.00%	100.00%	100.00%
VERB	83.31%	76.41%	79.71%
TOTAL	88.85%	88.70%	88.78%

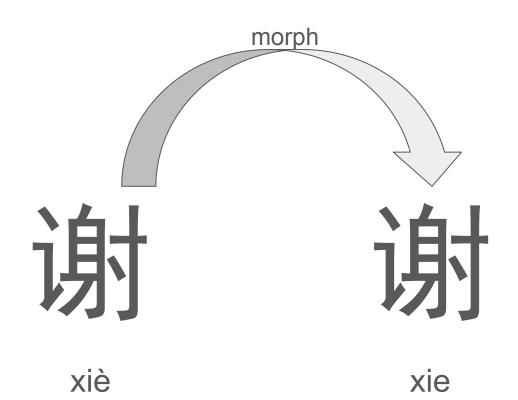

F-score of word level POS for our character-based tagger after the recombination

Training and parsing on the character level - comparison


	WB	СВ							
UAS	78.96%	81.72%		UPOS	XPOS	UAS	LAS	CLAS	
OLS	81.29%	85.93%	zh	85.26	85.07	68.95	65.88	62.03	
LAS	66.65%	72.99%							
	This pan	oer	Parsing resu	ılt on Chines	e UD tre	ebanks	in Doza	t,	

2017

Training and parsing on the character level - segmentation


Word segmentation accuracy after recombination: 99.8%

Conclusion

- Possibility to skip the word segmentation preprocessing
- Improvements on parsing using word-internal structures
 - Head position
 - Dependency relation
- High accuracy of detecting internal and external dependency relations
- Future work: regularization of different treebanks with new Chinese SUD annotation guidelines

Thank you for your attention

